Jump to content

Math and Science


RETIREDFAN1

Recommended Posts

  • Replies 184
  • Created
  • Last Reply

Top Posters In This Topic

  • 4 weeks later...

Pi (π) has been known for almost 4000 years, but even if we calculated number of seconds in those 4000 years and calculated π to that number of places, we would still only be approximating its actual value.

Ancient Babylonians calculated area of a circle by taking 3 times square of its radius, which gave a value of pi = 3. One Babylonian tablet (1900–1680 BC) indicates a value of 3.125 for π, which is a closer approximation.

Rhind Papyrus (1650 BC) gives us insight into mathematics of ancient Egypt. Egyptians calculated area of a circle by a formula that gave the approximate value of 3.1605 for π.

First calculation of π was done by Archimedes of Syracuse (287–212 BC), one of greatest mathematicians of the ancient world. Archimedes approximated area of a circle by using Pythagorean Theorem to find areas of two regular polygons: polygon inscribed within circle and polygon within which circle was circumscribed. Since actual area of circle lies between the areas of inscribed and circumscribed polygons, areas of polygons gave upper and lower bounds for area of circle. Archimedes knew that he had not found value of π but only an approximation within those limits. In this way, Archimedes showed that π is between 3 1/7 and 3 10/71.

A similar approach was used by Zu Chongzhi (429–501 CE), a brilliant Chinese mathematician and astronomer. Zu Chongzhi would not have been familiar with Archimedes’ method, but because his book has been lost, little is known of his work. He calculated value of ratio of circumference of a circle to its diameter to be 355/113. To compute this accuracy for π, he must have started with an inscribed regular 24,576-gon and performed lengthy calculations involving hundreds of square roots carried out to 9 decimal places.

Blog: https://thetravelbible.com/museum-of-artifacts/

FB_IMG_1695347885237.jpg

Link to comment
Share on other sites

  • 4 months later...

 

image.png

Football announcers often mention a player – usually a running back – moving the ball north-south (toward the end zones) or east-west (toward the sidelines). But this is done in the field’s frame of reference, not based on any sort of geographic orientation.

As it turns out, of the 31 NFL stadiums in use, only four (Packers, Broncos, Seahawks, and Buccaneers) are perfectly aligned along a north-south axis (e.g., the sideline or an imaginary line connecting the goalposts would point north-south). Two more are within 5° of north-south (Texans and Bears), and an additional three are within 15° (Rams, Giants/Jets, and Eagles).  Two are perfectly oriented along an east-west axis (Falcons and Vikings).

Of course, there is no rule in football regarding the orientation of the field. Players might say they prefer north-south because of where the sun might be at game time, or what the direction of the prevailing winds is. But most stadiums are often built to fit the available space, which can predetermine the orientation of the field, and for domes, none of the outdoor factors is relevant.

To generate this graph, all azimuths were measured as degrees clockwise from north using Google Earth. For covered stadiums, where the field is not visible from an aerial view, I used seating charts as a supplement. Azimuths were grouped using 10° bins (e.g., 85° to 95°) and then plotted in both directions (e.g., 30° was also plotted as 210°, as fields don’t point in just one direction) so that the graph would have 180° rotational symmetry.

Data source: Google Earth

 

https://www.tumblr.com/vizual-statistix/126425452261/football-announcers-often-mention-a-player?source=share

 

Other mind numbing stats .... 

Vizual Statistix (tumblr.com)

 

  • Like 1
Link to comment
Share on other sites

  • 2 weeks later...
Link to comment
Share on other sites

Black holes are by my opinion some of the most exciting things we have in the universe! We still don’t have the necessary physics to explain what happens after the plank radius/singularity. This is where we need to unify general relativity and quantum mechanics. In other words- EXTREMELY exciting. 

I have written the post and it is posted originally on Math & Physics site. 

Best wishes 
Sondre Åkerøy Sundrønning

FB_IMG_1708564465455.jpg

Link to comment
Share on other sites

𝐓𝐇𝐄𝐑𝐌𝐎𝐃𝐘𝐍𝐀𝐌𝐈𝐂𝐒

 #physicsfacts #physicseducation #Sondreaas #thermodynamics #learning #science #physics #knowledge #study #nature #facts #education 

𝚃𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌𝚜 𝚒𝚜 𝚊 𝚏𝚞𝚗𝚍𝚊𝚖𝚎𝚗𝚝𝚊𝚕 𝚋𝚛𝚊𝚗𝚌𝚑 𝚘𝚏 𝚙𝚑𝚢𝚜𝚒𝚌𝚜 𝚝𝚑𝚊𝚝 𝚎𝚗𝚌𝚘𝚖𝚙𝚊𝚜𝚜𝚎𝚜 𝚝𝚑𝚎 𝚜𝚝𝚞𝚍𝚢 𝚘𝚏 𝚎𝚗𝚎𝚛𝚐𝚢 𝚊𝚗𝚍 𝚒𝚝𝚜 𝚝𝚛𝚊𝚗𝚜𝚏𝚘𝚛𝚖𝚊𝚝𝚒𝚘𝚗𝚜 𝚠𝚒𝚝𝚑𝚒𝚗 𝚜𝚢𝚜𝚝𝚎𝚖𝚜. 𝚃𝚑𝚒𝚜 𝚏𝚒𝚎𝚕𝚍 𝚒𝚜 𝚞𝚗𝚍𝚎𝚛𝚙𝚒𝚗𝚗𝚎𝚍 𝚋𝚢 𝚝𝚑𝚎 𝚖𝚊𝚝𝚑𝚎𝚖𝚊𝚝𝚒𝚌𝚊𝚕 𝚛𝚎𝚕𝚊𝚝𝚒𝚘𝚗𝚜𝚑𝚒𝚙𝚜 𝚐𝚘𝚟𝚎𝚛𝚗𝚒𝚗𝚐 𝚑𝚎𝚊𝚝, 𝚠𝚘𝚛𝚔, 𝚊𝚗𝚍 𝚎𝚗𝚎𝚛𝚐𝚢 𝚝𝚛𝚊𝚗𝚜𝚏𝚎𝚛 𝚒𝚗 𝚟𝚊𝚛𝚒𝚘𝚞𝚜 𝚙𝚑𝚢𝚜𝚒𝚌𝚊𝚕 𝚜𝚢𝚜𝚝𝚎𝚖𝚜.

𝗛𝗘𝗔𝗧
𝙷𝚎𝚊𝚝 𝚒𝚜 𝚊 𝚏𝚘𝚛𝚖 𝚘𝚏 𝚎𝚗𝚎𝚛𝚐𝚢 𝚊𝚜𝚜𝚘𝚌𝚒𝚊𝚝𝚎𝚍 𝚠𝚒𝚝𝚑 𝚝𝚑𝚎 𝚖𝚘𝚝𝚒𝚘𝚗 𝚘𝚏 𝚙𝚊𝚛𝚝𝚒𝚌𝚕𝚎𝚜 𝚊𝚝 𝚝𝚑𝚎 𝚖𝚒𝚌𝚛𝚘𝚜𝚌𝚘𝚙𝚒𝚌 𝚕𝚎𝚟𝚎𝚕. 𝙸𝚝 𝚌𝚊𝚗 𝚋𝚎 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎𝚍 𝚋𝚎𝚝𝚠𝚎𝚎𝚗 𝚜𝚢𝚜𝚝𝚎𝚖𝚜 𝚊𝚜 𝚊 𝚛𝚎𝚜𝚞𝚕𝚝 𝚘𝚏 𝚝𝚎𝚖𝚙𝚎𝚛𝚊𝚝𝚞𝚛𝚎 𝚍𝚒𝚏𝚏𝚎𝚛𝚎𝚗𝚌𝚎𝚜 𝚊𝚗𝚍 𝚙𝚕𝚊𝚢𝚜 𝚊 𝚌𝚎𝚗𝚝𝚛𝚊𝚕 𝚛𝚘𝚕𝚎 𝚒𝚗 𝚝𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌 𝚙𝚛𝚘𝚌𝚎𝚜𝚜𝚎𝚜.

𝗪𝗢𝗥𝗞
Refers to the process of transferring energy through mechanical means, often resulting in changes to the system's state, such as compression, expansion, or displacement. 

𝗘𝗡𝗘𝗥𝗚𝗬
Energy itself is a fundamental concept, existing in various forms including kinetic, potential, thermal, and chemical energy, and can be categorized based on its capacity to do work.

𝗔𝗗𝗜𝗔𝗕𝗔𝗧𝗜𝗖 𝗣𝗥𝗢𝗖𝗘𝗦𝗦𝗘𝗦
Adiabatic process is characterized by the absence of heat transfer between the system and its surroundings. In other words, the process occurs in isolation, without heat entering or leaving the system. As a result, the change in internal energy of the system is solely attributed to work done on or by the system.

𝗜𝗦𝗢𝗧𝗛𝗘𝗥𝗠𝗔𝗟 𝗣𝗥𝗢𝗖𝗘𝗦𝗦
Isothermal process is a thermodynamic process during which the temperature of the system remains constant. This implies that the internal energy of the system also remains constant. In an isothermal process, heat is exchanged with the surroundings to maintain a constant temperature. The ideal gas law, which states that the product of pressure and volume is directly proportional to the temperature, is pertinent to isothermal processes.

𝗜𝗦𝗢𝗕𝗔𝗥𝗜𝗖 𝗣𝗥𝗢𝗖𝗘𝗦𝗦
𝙸𝚜𝚘𝚋𝚊𝚛𝚒𝚌 𝚙𝚛𝚘𝚌𝚎𝚜𝚜 𝚒𝚜 𝚊 𝚝𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌 𝚙𝚛𝚘𝚌𝚎𝚜𝚜 𝚝𝚑𝚊𝚝 𝚘𝚌𝚌𝚞𝚛𝚜 𝚊𝚝 𝚊 𝚌𝚘𝚗𝚜𝚝𝚊𝚗𝚝 𝚙𝚛𝚎𝚜𝚜𝚞𝚛𝚎. 𝙳𝚞𝚛𝚒𝚗𝚐 𝚊𝚗 𝚒𝚜𝚘𝚋𝚊𝚛𝚒𝚌 𝚙𝚛𝚘𝚌𝚎𝚜𝚜, 𝚝𝚑𝚎 𝚜𝚢𝚜𝚝𝚎𝚖 𝚖𝚊𝚢 𝚎𝚡𝚌𝚑𝚊𝚗𝚐𝚎 𝚑𝚎𝚊𝚝 𝚠𝚒𝚝𝚑 𝚝𝚑𝚎 𝚜𝚞𝚛𝚛𝚘𝚞𝚗𝚍𝚒𝚗𝚐𝚜, 𝚎𝚗𝚊𝚋𝚕𝚒𝚗𝚐 𝚌𝚑𝚊𝚗𝚐𝚎𝚜 𝚒𝚗 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕 𝚎𝚗𝚎𝚛𝚐𝚢. 𝙷𝚘𝚠𝚎𝚟𝚎𝚛, 𝚝𝚑𝚎 𝚙𝚛𝚎𝚜𝚜𝚞𝚛𝚎 𝚘𝚏 𝚝𝚑𝚎 𝚜𝚢𝚜𝚝𝚎𝚖 𝚛𝚎𝚖𝚊𝚒𝚗𝚜 𝚌𝚘𝚗𝚜𝚝𝚊𝚗𝚝 𝚝𝚑𝚛𝚘𝚞𝚐𝚑𝚘𝚞𝚝 𝚝𝚑𝚎 𝚙𝚛𝚘𝚌𝚎𝚜𝚜.

𝗧𝗛𝗘 𝗟𝗔𝗪𝗦 𝗢𝗙 𝗧𝗛𝗘𝗥𝗠𝗢𝗗𝗬𝗡𝗔𝗠𝗜𝗖𝗦
𝚃𝚑𝚎 𝚕𝚊𝚠𝚜 𝚘𝚏 𝚝𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌𝚜 𝚐𝚘𝚟𝚎𝚛𝚗 𝚝𝚑𝚎 𝚋𝚎𝚑𝚊𝚟𝚒𝚘𝚛 𝚘𝚏 𝚎𝚗𝚎𝚛𝚐𝚢 𝚠𝚒𝚝𝚑𝚒𝚗 𝚜𝚢𝚜𝚝𝚎𝚖𝚜. 

𝟭𝘀𝘁 𝗟𝗮𝘄 𝗼𝗳 𝗧𝗵𝗲𝗿𝗺𝗼𝗱𝘆𝗻𝗮𝗺𝗶𝗰𝘀
𝚃𝚑𝚎 𝚏𝚒𝚛𝚜𝚝 𝚕𝚊𝚠, 𝚘𝚏𝚝𝚎𝚗 𝚛𝚎𝚏𝚎𝚛𝚛𝚎𝚍 𝚝𝚘 𝚊𝚜 𝚝𝚑𝚎 𝚕𝚊𝚠 𝚘𝚏 𝚌𝚘𝚗𝚜𝚎𝚛𝚟𝚊𝚝𝚒𝚘𝚗 𝚘𝚏 𝚎𝚗𝚎𝚛𝚐𝚢, 𝚜𝚝𝚊𝚝𝚎𝚜 𝚝𝚑𝚊𝚝 𝚎𝚗𝚎𝚛𝚐𝚢 𝚌𝚊𝚗𝚗𝚘𝚝 𝚋𝚎 𝚌𝚛𝚎𝚊𝚝𝚎𝚍 𝚘𝚛 𝚍𝚎𝚜𝚝𝚛𝚘𝚢𝚎𝚍 𝚒𝚗 𝚊𝚗 𝚒𝚜𝚘𝚕𝚊𝚝𝚎𝚍 𝚜𝚢𝚜𝚝𝚎𝚖; 𝚒𝚝 𝚌𝚊𝚗 𝚘𝚗𝚕𝚢 𝚌𝚑𝚊𝚗𝚐𝚎 𝚏𝚘𝚛𝚖𝚜 𝚘𝚛 𝚋𝚎 𝚝𝚛𝚊𝚗𝚜𝚏𝚎𝚛𝚛𝚎𝚍 𝚋𝚎𝚝𝚠𝚎𝚎𝚗 𝚝𝚑𝚎 𝚜𝚢𝚜𝚝𝚎𝚖 𝚊𝚗𝚍 𝚒𝚝𝚜 𝚜𝚞𝚛𝚛𝚘𝚞𝚗𝚍𝚒𝚗𝚐𝚜. 

𝙼𝚊𝚝𝚑𝚎𝚖𝚊𝚝𝚒𝚌𝚊𝚕𝚕𝚢, 𝚝𝚑𝚎 𝚏𝚒𝚛𝚜𝚝 𝚕𝚊𝚠 𝚒𝚜 𝚎𝚡𝚙𝚛𝚎𝚜𝚜𝚎𝚍 𝚊𝚜 Δ𝚄 = 𝚀 - 𝚆, 𝚠𝚑𝚎𝚛𝚎 Δ𝚄 𝚛𝚎𝚙𝚛𝚎𝚜𝚎𝚗𝚝𝚜 𝚝𝚑𝚎 𝚌𝚑𝚊𝚗𝚐𝚎 𝚒𝚗 𝚝𝚑𝚎 𝚜𝚢𝚜𝚝𝚎𝚖'𝚜 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕 𝚎𝚗𝚎𝚛𝚐𝚢, 𝚀 𝚒𝚜 𝚝𝚑𝚎 𝚑𝚎𝚊𝚝 𝚊𝚍𝚍𝚎𝚍 𝚝𝚘 𝚝𝚑𝚎 𝚜𝚢𝚜𝚝𝚎𝚖, 𝚊𝚗𝚍 𝚆 𝚒𝚜 𝚝𝚑𝚎 𝚠𝚘𝚛𝚔 𝚍𝚘𝚗𝚎 𝚋𝚢 𝚝𝚑𝚎 𝚜𝚢𝚜𝚝𝚎𝚖.

𝟮𝗻𝗱 𝗟𝗮𝘄 𝗼𝗳 𝗧𝗵𝗲𝗿𝗺𝗼𝗱𝘆𝗻𝗮𝗺𝗶𝗰𝘀
𝚃𝚑𝚎 𝚜𝚎𝚌𝚘𝚗𝚍 𝚕𝚊𝚠 𝚘𝚏 𝚝𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌𝚜 𝚒𝚗𝚝𝚛𝚘𝚍𝚞𝚌𝚎𝚜 𝚝𝚑𝚎 𝚌𝚘𝚗𝚌𝚎𝚙𝚝 𝚘𝚏 𝚎𝚗𝚝𝚛𝚘𝚙𝚢 𝚊𝚗𝚍 𝚜𝚝𝚊𝚝𝚎𝚜 𝚝𝚑𝚊𝚝 𝚒𝚗 𝚊𝚗𝚢 𝚎𝚗𝚎𝚛𝚐𝚢 𝚝𝚛𝚊𝚗𝚜𝚏𝚎𝚛 𝚘𝚛 𝚝𝚛𝚊𝚗𝚜𝚏𝚘𝚛𝚖𝚊𝚝𝚒𝚘𝚗, 𝚝𝚑𝚎 𝚝𝚘𝚝𝚊𝚕 𝚎𝚗𝚝𝚛𝚘𝚙𝚢 𝚘𝚏 𝚊𝚗 𝚒𝚜𝚘𝚕𝚊𝚝𝚎𝚍 𝚜𝚢𝚜𝚝𝚎𝚖 𝚊𝚕𝚠𝚊𝚢𝚜 𝚒𝚗𝚌𝚛𝚎𝚊𝚜𝚎𝚜 𝚘𝚟𝚎𝚛 𝚝𝚒𝚖𝚎. 

𝗘𝗡𝗧𝗥𝗢𝗣𝗬
𝙴𝚗𝚝𝚛𝚘𝚙𝚢 𝚜𝚎𝚛𝚟𝚎𝚜 𝚊𝚜 𝚊 𝚖𝚎𝚊𝚜𝚞𝚛𝚎 𝚘𝚏 𝚝𝚑𝚎 𝚕𝚎𝚟𝚎𝚕 𝚘𝚏 𝚛𝚊𝚗𝚍𝚘𝚖𝚗𝚎𝚜𝚜 𝚊𝚗𝚍 𝚍𝚒𝚜𝚘𝚛𝚍𝚎𝚛 𝚠𝚒𝚝𝚑𝚒𝚗 𝚊 𝚜𝚢𝚜𝚝𝚎𝚖, 𝚘𝚏𝚏𝚎𝚛𝚒𝚗𝚐 𝚙𝚒𝚟𝚘𝚝𝚊𝚕 𝚒𝚗𝚜𝚒𝚐𝚑𝚝𝚜 𝚒𝚗𝚝𝚘 𝚝𝚑𝚎 𝚍𝚒𝚛𝚎𝚌𝚝𝚒𝚘𝚗 𝚊𝚗𝚍 𝚋𝚎𝚑𝚊𝚟𝚒𝚘𝚛 𝚘𝚏 𝚝𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌 𝚙𝚛𝚘𝚌𝚎𝚜𝚜𝚎𝚜. 𝙸𝚝 𝚚𝚞𝚊𝚗𝚝𝚒𝚏𝚒𝚎𝚜 𝚝𝚑𝚎 𝚜𝚢𝚜𝚝𝚎𝚖'𝚜 𝚞𝚗𝚙𝚛𝚎𝚍𝚒𝚌𝚝𝚊𝚋𝚒𝚕𝚒𝚝𝚢 𝚊𝚗𝚍 𝚙𝚛𝚘𝚟𝚒𝚍𝚎𝚜 𝚊 𝚏𝚞𝚗𝚍𝚊𝚖𝚎𝚗𝚝𝚊𝚕 𝚋𝚊𝚜𝚒𝚜 𝚏𝚘𝚛 𝚊𝚜𝚜𝚎𝚜𝚜𝚒𝚗𝚐 𝚝𝚑𝚎 𝚎𝚟𝚘𝚕𝚞𝚝𝚒𝚘𝚗 𝚘𝚏 𝚎𝚗𝚎𝚛𝚐𝚢 𝚊𝚗𝚍 𝚖𝚊𝚝𝚝𝚎𝚛 𝚠𝚒𝚝𝚑𝚒𝚗 𝚙𝚑𝚢𝚜𝚒𝚌𝚊𝚕 𝚜𝚢𝚜𝚝𝚎𝚖𝚜.

𝟯𝗿𝗱 𝗟𝗮𝘄 𝗼𝗳 𝗧𝗵𝗲𝗿𝗺𝗼𝗱𝘆𝗻𝗮𝗺𝗶𝗰𝘀
𝚃𝚑𝚎 𝚝𝚑𝚒𝚛𝚍 𝚕𝚊𝚠 𝚘𝚏 𝚝𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌𝚜 𝚜𝚙𝚎𝚌𝚒𝚏𝚒𝚎𝚜 𝚝𝚑𝚊𝚝 𝚝𝚑𝚎 𝚎𝚗𝚝𝚛𝚘𝚙𝚢 𝚘𝚏 𝚊 𝚙𝚎𝚛𝚏𝚎𝚌𝚝 𝚌𝚛𝚢𝚜𝚝𝚊𝚕 𝚊𝚝 𝚊𝚋𝚜𝚘𝚕𝚞𝚝𝚎 𝚣𝚎𝚛𝚘 𝚒𝚜 𝚎𝚡𝚊𝚌𝚝𝚕𝚢 𝚎𝚚𝚞𝚊𝚕 𝚝𝚘 𝚣𝚎𝚛𝚘, 𝚙𝚛𝚘𝚟𝚒𝚍𝚒𝚗𝚐 𝚊 𝚏𝚞𝚗𝚍𝚊𝚖𝚎𝚗𝚝𝚊𝚕 𝚋𝚎𝚗𝚌𝚑𝚖𝚊𝚛𝚔 𝚏𝚘𝚛 𝚝𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌 𝚖𝚎𝚊𝚜𝚞𝚛𝚎𝚖𝚎𝚗𝚝𝚜.

𝗠𝗔𝗧𝗛𝗘𝗠𝗔𝗧𝗜𝗖𝗔𝗟𝗟𝗬
𝙼𝚊𝚝𝚑𝚎𝚖𝚊𝚝𝚒𝚌𝚊𝚕𝚕𝚢, 𝚝𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌𝚜 𝚞𝚝𝚒𝚕𝚒𝚜𝚎𝚜 𝚊 𝚛𝚊𝚗𝚐𝚎 𝚘𝚏 𝚎𝚚𝚞𝚊𝚝𝚒𝚘𝚗𝚜, 𝚒𝚗𝚌𝚕𝚞𝚍𝚒𝚗𝚐 𝚝𝚑𝚘𝚜𝚎 𝚛𝚎𝚕𝚊𝚝𝚎𝚍 𝚝𝚘 𝚑𝚎𝚊𝚝 𝚌𝚊𝚙𝚊𝚌𝚒𝚝𝚒𝚎𝚜, 𝚠𝚘𝚛𝚔 𝚍𝚘𝚗𝚎 𝚋𝚢 𝚍𝚒𝚏𝚏𝚎𝚛𝚎𝚗𝚝 𝚙𝚛𝚘𝚌𝚎𝚜𝚜𝚎𝚜 (𝚜𝚞𝚌𝚑 𝚊𝚜 𝚒𝚜𝚘𝚝𝚑𝚎𝚛𝚖𝚊𝚕, 𝚊𝚍𝚒𝚊𝚋𝚊𝚝𝚒𝚌, 𝚊𝚗𝚍 𝚒𝚜𝚘𝚋𝚊𝚛𝚒𝚌 𝚙𝚛𝚘𝚌𝚎𝚜𝚜𝚎𝚜), 𝚊𝚗𝚍 𝙲𝚊𝚛𝚗𝚘𝚝 𝚎𝚏𝚏𝚒𝚌𝚒𝚎𝚗𝚌𝚢 𝚏𝚘𝚛 𝚒𝚍𝚎𝚊𝚕 𝚑𝚎𝚊𝚝 𝚎𝚗𝚐𝚒𝚗𝚎𝚜.

𝚃𝚑𝚎𝚜𝚎 𝚎𝚚𝚞𝚊𝚝𝚒𝚘𝚗𝚜, 𝚘𝚏𝚝𝚎𝚗 𝚍𝚎𝚛𝚒𝚟𝚎𝚍 𝚏𝚛𝚘𝚖 𝚝𝚑𝚎 𝚏𝚞𝚗𝚍𝚊𝚖𝚎𝚗𝚝𝚊𝚕 𝚕𝚊𝚠𝚜 𝚘𝚏 𝚝𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌𝚜, 𝚎𝚗𝚊𝚋𝚕𝚎 𝚝𝚑𝚎 𝚚𝚞𝚊𝚗𝚝𝚒𝚝𝚊𝚝𝚒𝚟𝚎 𝚊𝚗𝚊𝚕𝚢𝚜𝚒𝚜 𝚘𝚏 𝚎𝚗𝚎𝚛𝚐𝚢 𝚝𝚛𝚊𝚗𝚜𝚏𝚎𝚛 𝚊𝚗𝚍 𝚝𝚛𝚊𝚗𝚜𝚏𝚘𝚛𝚖𝚊𝚝𝚒𝚘𝚗 𝚠𝚒𝚝𝚑𝚒𝚗 𝚜𝚢𝚜𝚝𝚎𝚖𝚜.

𝗖𝗢𝗡𝗖𝗟𝗨𝗦𝗜𝗢𝗡
𝚃𝚑𝚎𝚛𝚖𝚘𝚍𝚢𝚗𝚊𝚖𝚒𝚌𝚜 𝚙𝚛𝚘𝚟𝚒𝚍𝚎𝚜 𝚊 𝚌𝚘𝚖𝚙𝚛𝚎𝚑𝚎𝚗𝚜𝚒𝚟𝚎 𝚏𝚛𝚊𝚖𝚎𝚠𝚘𝚛𝚔 𝚏𝚘𝚛 𝚞𝚗𝚍𝚎𝚛𝚜𝚝𝚊𝚗𝚍𝚒𝚗𝚐 𝚝𝚑𝚎 𝚋𝚎𝚑𝚊𝚟𝚒𝚘𝚛 𝚘𝚏 𝚎𝚗𝚎𝚛𝚐𝚢 𝚒𝚗 𝚙𝚑𝚢𝚜𝚒𝚌𝚊𝚕 𝚜𝚢𝚜𝚝𝚎𝚖𝚜, 𝚒𝚗𝚌𝚘𝚛𝚙𝚘𝚛𝚊𝚝𝚒𝚗𝚐 𝚖𝚊𝚝𝚑𝚎𝚖𝚊𝚝𝚒𝚌𝚊𝚕 𝚛𝚎𝚕𝚊𝚝𝚒𝚘𝚗𝚜𝚑𝚒𝚙𝚜 𝚝𝚑𝚊𝚝 𝚞𝚗𝚍𝚎𝚛𝚙𝚒𝚗 𝚝𝚑𝚎 𝚝𝚛𝚊𝚗𝚜𝚏𝚎𝚛 𝚘𝚏 𝚑𝚎𝚊𝚝, 𝚝𝚑𝚎 𝚙𝚎𝚛𝚏𝚘𝚛𝚖𝚊𝚗𝚌𝚎 𝚘𝚏 𝚠𝚘𝚛𝚔, 𝚊𝚗𝚍 𝚝𝚑𝚎 𝚘𝚟𝚎𝚛𝚊𝚕𝚕 𝚝𝚛𝚊𝚗𝚜𝚏𝚘𝚛𝚖𝚊𝚝𝚒𝚘𝚗 𝚘𝚏 𝚎𝚗𝚎𝚛𝚐𝚢. 
𝙸𝚝𝚜 𝚙𝚛𝚒𝚗𝚌𝚒𝚙𝚕𝚎𝚜 𝚊𝚗𝚍 𝚕𝚊𝚠𝚜 𝚑𝚊𝚟𝚎 𝚏𝚊𝚛-𝚛𝚎𝚊𝚌𝚑𝚒𝚗𝚐 𝚊𝚙𝚙𝚕𝚒𝚌𝚊𝚝𝚒𝚘𝚗𝚜 𝚒𝚗 𝚟𝚊𝚛𝚒𝚘𝚞𝚜 𝚜𝚌𝚒𝚎𝚗𝚝𝚒𝚏𝚒𝚌, 𝚎𝚗𝚐𝚒𝚗𝚎𝚎𝚛𝚒𝚗𝚐, 𝚊𝚗𝚍 𝚝𝚎𝚌𝚑𝚗𝚘𝚕𝚘𝚐𝚒𝚌𝚊𝚕 𝚍𝚘𝚖𝚊𝚒𝚗𝚜, 𝚜𝚎𝚛𝚟𝚒𝚗𝚐 𝚊𝚜 𝚊 𝚌𝚘𝚛𝚗𝚎𝚛𝚜𝚝𝚘𝚗𝚎 𝚘𝚏 𝚘𝚞𝚛 𝚞𝚗𝚍𝚎𝚛𝚜𝚝𝚊𝚗𝚍𝚒𝚗𝚐 𝚘𝚏 𝚎𝚗𝚎𝚛𝚐𝚢 𝚊𝚗𝚍 𝚒𝚝𝚜 𝚛𝚘𝚕𝚎 𝚒𝚗 𝚝𝚑𝚎 𝚗𝚊𝚝𝚞𝚛𝚊𝚕 𝚠𝚘𝚛𝚕𝚍.

𝐁𝐄𝐒𝐓 𝐖𝐈𝐒𝐇𝐄𝐒 
𝐒𝐎𝐍𝐃𝐑𝐄 𝐒𝐔𝐍𝐃𝐑Ø𝐍𝐍𝐈𝐍𝐆
𝐏𝐇𝐘𝐒𝐈𝐂𝐈𝐒𝐓

FB_IMG_1708978402015.jpg

Link to comment
Share on other sites

The death of Archimedes at the capture of Syracuse by the Romans.

Archimedes (c287-212 BC) is one of the most celebrated scientists of the ancient world. He is probably most famous for his shout of 'Eureka' when he realised that the level of water in his bath rose when he got into it. Archimedes' major contribution to mathematics was his discovery of formulae for the areas and volumes of spheres, cylinders, parabolas and other plane and solid figures.

The methods he used anticipated the theories of integration that were developed 1800 years later. He also pioneered the science of hydrostatics, the study of the pressure and equilibrium of fluids. The Archimedean screw developed by him as a means of raising water is still used for irrigation purposes today.

Archimedes was killed when the Romans captured Syracuse in 212 BC. The city had held out against the besieging Romans for 3 years, aided by various military engines built to Archimedes' designs.

FB_IMG_1709175541097.jpg

Link to comment
Share on other sites

  • RETIREDFAN1 changed the title to Math and Physics

𝐍𝐄𝐔𝐓𝐑𝐎𝐍𝐒 𝐒𝐓𝐀𝐑𝐒

#sondreaas #education #universe #astronomy #physics #facts #nature #learning #cosmos

𝘕𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘳𝘢𝘯𝘬 𝘢𝘴 𝘴𝘰𝘮𝘦 𝘰𝘧 𝘵𝘩𝘦 𝘮𝘰𝘴𝘵 𝘧𝘢𝘴𝘤𝘪𝘯𝘢𝘵𝘪𝘯𝘨 𝘢𝘯𝘥 𝘦𝘯𝘪𝘨𝘮𝘢𝘵𝘪𝘤 𝘱𝘩𝘦𝘯𝘰𝘮𝘦𝘯𝘢 𝘬𝘯𝘰𝘸𝘯 𝘪𝘯 𝘵𝘩𝘦 𝘤𝘰𝘴𝘮𝘰𝘴. 𝘛𝘩𝘦𝘴𝘦 𝘦𝘹𝘵𝘳𝘢𝘰𝘳𝘥𝘪𝘯𝘢𝘳𝘺 𝘤𝘰𝘴𝘮𝘪𝘤 𝘰𝘣𝘫𝘦𝘤𝘵𝘴 𝘦𝘮𝘦𝘳𝘨𝘦 𝘧𝘳𝘰𝘮 𝘵𝘩𝘦 𝘳𝘦𝘮𝘢𝘪𝘯𝘴 𝘰𝘧 𝘤𝘰𝘭𝘰𝘴𝘴𝘢𝘭 𝘴𝘵𝘢𝘳𝘴 𝘵𝘩𝘢𝘵 𝘩𝘢𝘷𝘦 𝘤𝘰𝘮𝘱𝘭𝘦𝘵𝘦𝘥 𝘵𝘩𝘦𝘪𝘳 𝘭𝘪𝘧𝘦 𝘴𝘱𝘢𝘯 𝘷𝘪𝘢 𝘢 𝘤𝘢𝘵𝘢𝘤𝘭𝘺𝘴𝘮𝘪𝘤 𝘦𝘷𝘦𝘯𝘵 𝘬𝘯𝘰𝘸𝘯 𝘢𝘴 𝘢 𝘴𝘶𝘱𝘦𝘳𝘯𝘰𝘷𝘢 𝘦𝘹𝘱𝘭𝘰𝘴𝘪𝘰𝘯. 
𝘛𝘰 𝘣𝘦𝘵𝘵𝘦𝘳 𝘶𝘯𝘥𝘦𝘳𝘴𝘵𝘢𝘯𝘥 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴, 𝘐 𝘸𝘪𝘭𝘭 𝘪𝘯 𝘵𝘩𝘪𝘴 𝘱𝘰𝘴𝘵 𝘵𝘳𝘺 𝘵𝘰 𝘦𝘹𝘱𝘭𝘢𝘪𝘯 𝘵𝘩𝘦𝘪𝘳 𝘰𝘳𝘪𝘨𝘪𝘯𝘴, 𝘵𝘩𝘦 𝘪𝘯𝘵𝘦𝘯𝘴𝘦 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘧𝘰𝘳𝘤𝘦 𝘵𝘩𝘦𝘺 𝘱𝘰𝘴𝘴𝘦𝘴𝘴, 𝘵𝘩𝘦 𝘶𝘯𝘪𝘲𝘶𝘦 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭 𝘵𝘩𝘦𝘺 𝘢𝘳𝘦 𝘮𝘢𝘥𝘦 𝘰𝘧, 𝘢𝘯𝘥 𝘵𝘩𝘦𝘪𝘳 𝘱𝘰𝘸𝘦𝘳𝘧𝘶𝘭 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴, 𝘵𝘩𝘦 𝘥𝘪𝘧𝘧𝘦𝘳𝘦𝘯𝘤𝘦 𝘣𝘦𝘵.

𝘛𝘩𝘦 𝘣𝘪𝘳𝘵𝘩 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘢 𝘴𝘱𝘦𝘤𝘵𝘢𝘤𝘭𝘦 𝘰𝘧 𝘤𝘰𝘴𝘮𝘪𝘤 𝘱𝘳𝘰𝘱𝘰𝘳𝘵𝘪𝘰𝘯𝘴, 𝘣𝘦𝘨𝘪𝘯𝘯𝘪𝘯𝘨 𝘸𝘩𝘦𝘯 𝘢 𝘴𝘵𝘢𝘳 𝘧𝘢𝘳 𝘮𝘰𝘳𝘦 𝘮𝘢𝘴𝘴𝘪𝘷𝘦 𝘵𝘩𝘢𝘯 𝘰𝘶𝘳 𝘚𝘶𝘯 𝘦𝘹𝘩𝘢𝘶𝘴𝘵𝘴 𝘪𝘵𝘴 𝘯𝘶𝘤𝘭𝘦𝘢𝘳 𝘧𝘶𝘦𝘭. 𝘛𝘩𝘦 𝘴𝘵𝘢𝘳'𝘴 𝘤𝘰𝘳𝘦 𝘤𝘢𝘯 𝘯𝘰 𝘭𝘰𝘯𝘨𝘦𝘳 𝘴𝘶𝘱𝘱𝘰𝘳𝘵 𝘪𝘵𝘴 𝘰𝘸𝘯 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘸𝘦𝘪𝘨𝘩𝘵, 𝘭𝘦𝘢𝘥𝘪𝘯𝘨 𝘵𝘰 𝘢 𝘤𝘢𝘵𝘢𝘴𝘵𝘳𝘰𝘱𝘩𝘪𝘤 𝘤𝘰𝘭𝘭𝘢𝘱𝘴𝘦. 𝘞𝘪𝘵𝘩𝘪𝘯 𝘢 𝘧𝘳𝘢𝘤𝘵𝘪𝘰𝘯 𝘰𝘧 𝘢 𝘴𝘦𝘤𝘰𝘯𝘥, 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳 𝘪𝘮𝘱𝘭𝘰𝘥𝘦𝘴 𝘢𝘯𝘥 𝘵𝘩𝘦𝘯 𝘳𝘦𝘣𝘰𝘶𝘯𝘥𝘴, 𝘦𝘫𝘦𝘤𝘵𝘪𝘯𝘨 𝘪𝘵𝘴 𝘰𝘶𝘵𝘦𝘳 𝘭𝘢𝘺𝘦𝘳𝘴 𝘪𝘯𝘵𝘰 𝘴𝘱𝘢𝘤𝘦 𝘸𝘪𝘵𝘩 𝘢𝘯 𝘪𝘮𝘮𝘦𝘯𝘴𝘦 𝘧𝘰𝘳𝘤𝘦 𝘪𝘯 𝘢 𝘴𝘶𝘱𝘦𝘳𝘯𝘰𝘷𝘢 𝘦𝘹𝘱𝘭𝘰𝘴𝘪𝘰𝘯. 𝘛𝘩𝘦 𝘤𝘰𝘳𝘦 𝘵𝘩𝘢𝘵 𝘳𝘦𝘮𝘢𝘪𝘯𝘴 𝘪𝘴 𝘤𝘰𝘮𝘱𝘳𝘦𝘴𝘴𝘦𝘥 𝘵𝘰 𝘢𝘯 𝘦𝘹𝘵𝘳𝘢𝘰𝘳𝘥𝘪𝘯𝘢𝘳𝘺 𝘥𝘦𝘨𝘳𝘦𝘦, 𝘨𝘪𝘷𝘪𝘯𝘨 𝘳𝘪𝘴𝘦 𝘵𝘰 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳.

𝘕𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘢𝘳𝘦 𝘥𝘪𝘴𝘵𝘪𝘯𝘨𝘶𝘪𝘴𝘩𝘦𝘥 𝘣𝘺 𝘵𝘩𝘦𝘪𝘳 𝘪𝘯𝘤𝘰𝘯𝘤𝘦𝘪𝘷𝘢𝘣𝘭𝘺 𝘴𝘵𝘳𝘰𝘯𝘨 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘱𝘶𝘭𝘭, 𝘢 𝘤𝘰𝘯𝘴𝘦𝘲𝘶𝘦𝘯𝘤𝘦 𝘰𝘧 𝘵𝘩𝘦𝘪𝘳 𝘪𝘮𝘮𝘦𝘯𝘴𝘦 𝘮𝘢𝘴𝘴 𝘢𝘯𝘥 𝘤𝘰𝘮𝘱𝘢𝘤𝘵 𝘴𝘪𝘻𝘦. 𝘋𝘦𝘴𝘱𝘪𝘵𝘦 𝘣𝘦𝘪𝘯𝘨 𝘵𝘺𝘱𝘪𝘤𝘢𝘭𝘭𝘺 𝘢𝘣𝘰𝘶𝘵 20 𝘬𝘪𝘭𝘰𝘮𝘦𝘵𝘦𝘳𝘴 𝘪𝘯 𝘥𝘪𝘢𝘮𝘦𝘵𝘦𝘳, 𝘸𝘩𝘪𝘤𝘩 𝘵𝘳𝘢𝘯𝘴𝘭𝘢𝘵𝘦𝘴 𝘵𝘰 𝘢 𝘳𝘢𝘥𝘪𝘶𝘴 𝘰𝘧 𝘳𝘰𝘶𝘨𝘩𝘭𝘺 10 𝘬𝘪𝘭𝘰𝘮𝘦𝘵𝘦𝘳𝘴, 𝘵𝘩𝘦𝘺 𝘶𝘴𝘶𝘢𝘭𝘭𝘺 𝘱𝘰𝘴𝘴𝘦𝘴𝘴 𝘮𝘰𝘳𝘦 𝘮𝘢𝘴𝘴 𝘵𝘩𝘢𝘯 𝘰𝘶𝘳 𝘰𝘸𝘯 𝘴𝘵𝘢𝘳 𝘵𝘩𝘦 𝘚𝘶𝘯. 𝘛𝘩𝘪𝘴 𝘪𝘮𝘮𝘦𝘯𝘴𝘦 𝘥𝘦𝘯𝘴𝘪𝘵𝘺 𝘮𝘦𝘢𝘯𝘴 𝘵𝘩𝘢𝘵 𝘵𝘩𝘦 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘧𝘪𝘦𝘭𝘥 𝘢𝘵 𝘵𝘩𝘦 𝘴𝘶𝘳𝘧𝘢𝘤𝘦 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘣𝘪𝘭𝘭𝘪𝘰𝘯𝘴 𝘰𝘧 𝘵𝘪𝘮𝘦𝘴 𝘴𝘵𝘳𝘰𝘯𝘨𝘦𝘳 𝘵𝘩𝘢𝘯 𝘵𝘩𝘢𝘵 𝘰𝘯 𝘌𝘢𝘳𝘵𝘩. 
𝘕𝘰𝘵𝘢𝘣𝘭𝘺, 𝘵𝘩𝘪𝘴 𝘱𝘰𝘸𝘦𝘳𝘧𝘶𝘭 𝘨𝘳𝘢𝘷𝘪𝘵𝘺 𝘥𝘳𝘢𝘴𝘵𝘪𝘤𝘢𝘭𝘭𝘺 𝘸𝘢𝘳𝘱𝘴 𝘵𝘩𝘦 𝘴𝘶𝘳𝘳𝘰𝘶𝘯𝘥𝘪𝘯𝘨 𝘴𝘱𝘢𝘤𝘦𝘵𝘪𝘮𝘦 𝘢𝘯𝘥 𝘤𝘢𝘯 𝘴𝘪𝘨𝘯𝘪𝘧𝘪𝘤𝘢𝘯𝘵𝘭𝘺 𝘣𝘦𝘯𝘥 𝘵𝘩𝘦 𝘱𝘢𝘵𝘩 𝘰𝘧 𝘭𝘪𝘨𝘩𝘵. 𝘚𝘪𝘯𝘤𝘦 𝘵𝘩𝘦 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘧𝘰𝘳𝘤𝘦 𝘪𝘴 𝘴𝘰 𝘴𝘵𝘳𝘰𝘯𝘨 𝘕𝘦𝘸𝘵𝘰𝘯𝘴 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘢𝘭 𝘭𝘢𝘸 𝘰𝘧 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯 𝘪𝘴 𝘯𝘰𝘵 𝘷𝘢𝘭𝘪𝘥 𝘯𝘦𝘢𝘳 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳.  

𝘛𝘩𝘦𝘴𝘦 𝘴𝘵𝘢𝘳𝘴 𝘢𝘳𝘦 𝘯𝘢𝘮𝘦𝘥 𝘧𝘰𝘳 𝘵𝘩𝘦𝘪𝘳 𝘤𝘰𝘮𝘱𝘰𝘴𝘪𝘵𝘪𝘰𝘯. 𝘛𝘩𝘦𝘺 𝘢𝘳𝘦 𝘱𝘳𝘦𝘥𝘰𝘮𝘪𝘯𝘢𝘯𝘵𝘭𝘺 𝘮𝘢𝘥𝘦 𝘰𝘧 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴, 𝘴𝘶𝘣𝘢𝘵𝘰𝘮𝘪𝘤 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴 𝘸𝘪𝘵𝘩 𝘯𝘰 𝘦𝘭𝘦𝘤𝘵𝘳𝘪𝘤 𝘤𝘩𝘢𝘳𝘨𝘦. 𝘛𝘩𝘪𝘴 𝘴𝘵𝘳𝘶𝘤𝘵𝘶𝘳𝘦 𝘪𝘴 𝘱𝘰𝘴𝘴𝘪𝘣𝘭𝘦 𝘣𝘦𝘤𝘢𝘶𝘴𝘦 𝘵𝘩𝘦 𝘢𝘵𝘰𝘮𝘴 𝘵𝘩𝘢𝘵 𝘮𝘢𝘥𝘦 𝘶𝘱 𝘵𝘩𝘦 𝘰𝘳𝘪𝘨𝘪𝘯𝘢𝘭 𝘴𝘵𝘢𝘳'𝘴 𝘤𝘰𝘳𝘦 𝘢𝘳𝘦 𝘤𝘳𝘶𝘴𝘩𝘦𝘥 𝘶𝘯𝘥𝘦𝘳 𝘵𝘩𝘦 𝘪𝘯𝘵𝘦𝘯𝘴𝘦 𝘱𝘳𝘦𝘴𝘴𝘶𝘳𝘦 𝘶𝘯𝘵𝘪𝘭 𝘵𝘩𝘦𝘪𝘳 𝘦𝘭𝘦𝘤𝘵𝘳𝘰𝘯𝘴 𝘢𝘯𝘥 𝘱𝘳𝘰𝘵𝘰𝘯𝘴 𝘮𝘦𝘳𝘨𝘦 𝘵𝘰 𝘧𝘰𝘳𝘮 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴. 𝘛𝘩𝘦 𝘳𝘦𝘴𝘶𝘭𝘵 𝘪𝘴 𝘢 𝘤𝘰𝘴𝘮𝘪𝘤 𝘣𝘰𝘥𝘺 𝘤𝘰𝘮𝘱𝘰𝘴𝘦𝘥 𝘢𝘭𝘮𝘰𝘴𝘵 𝘦𝘯𝘵𝘪𝘳𝘦𝘭𝘺 𝘰𝘧 𝘵𝘩𝘦𝘴𝘦 𝘥𝘦𝘯𝘴𝘦𝘭𝘺 𝘱𝘢𝘤𝘬𝘦𝘥 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴, 𝘭𝘦𝘢𝘥𝘪𝘯𝘨 𝘵𝘰 𝘢 𝘴𝘵𝘢𝘵𝘦 𝘰𝘧 𝘮𝘢𝘵𝘵𝘦𝘳 𝘬𝘯𝘰𝘸𝘯 𝘢𝘴 𝘯𝘦𝘶𝘵𝘳𝘰𝘯-𝘥𝘦𝘨𝘦𝘯𝘦𝘳𝘢𝘵𝘦 𝘮𝘢𝘵𝘵𝘦𝘳, 𝘸𝘩𝘪𝘤𝘩 𝘪𝘴 𝘯𝘰𝘵 𝘧𝘰𝘶𝘯𝘥 𝘯𝘢𝘵𝘶𝘳𝘢𝘭𝘭𝘺 𝘰𝘯 𝘌𝘢𝘳𝘵𝘩.

𝘐𝘯 𝘢𝘥𝘥𝘪𝘵𝘪𝘰𝘯 𝘵𝘰 𝘵𝘩𝘦𝘪𝘳 𝘳𝘦𝘮𝘢𝘳𝘬𝘢𝘣𝘭𝘦 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘴𝘵𝘳𝘦𝘯𝘨𝘵𝘩, 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘢𝘭𝘴𝘰 𝘦𝘹𝘩𝘪𝘣𝘪𝘵 𝘦𝘹𝘵𝘳𝘢𝘰𝘳𝘥𝘪𝘯𝘢𝘳𝘺 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴. 𝘛𝘩𝘦𝘴𝘦 𝘧𝘪𝘦𝘭𝘥𝘴 𝘤𝘢𝘯 𝘣𝘦 𝘵𝘳𝘪𝘭𝘭𝘪𝘰𝘯𝘴 𝘰𝘧 𝘵𝘪𝘮𝘦𝘴 𝘴𝘵𝘳𝘰𝘯𝘨𝘦𝘳 𝘵𝘩𝘢𝘯 𝘌𝘢𝘳𝘵𝘩'𝘴 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥. 𝘚𝘶𝘤𝘩 𝘱𝘰𝘸𝘦𝘳𝘧𝘶𝘭 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘰𝘳𝘤𝘦𝘴 𝘢𝘤𝘤𝘦𝘭𝘦𝘳𝘢𝘵𝘦 𝘤𝘩𝘢𝘳𝘨𝘦𝘥 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴 𝘢𝘳𝘰𝘶𝘯𝘥 𝘵𝘩𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳, 𝘤𝘢𝘶𝘴𝘪𝘯𝘨 𝘵𝘩𝘦 𝘦𝘮𝘪𝘴𝘴𝘪𝘰𝘯 𝘰𝘧 𝘪𝘯𝘵𝘦𝘯𝘴𝘦 𝘳𝘢𝘥𝘪𝘢𝘵𝘪𝘰𝘯 𝘧𝘳𝘰𝘮 𝘵𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘱𝘰𝘭𝘦𝘴. 𝘞𝘩𝘦𝘯 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳'𝘴 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘢𝘹𝘪𝘴 𝘥𝘰𝘦𝘴 𝘯𝘰𝘵 𝘢𝘭𝘪𝘨𝘯 𝘸𝘪𝘵𝘩 𝘪𝘵𝘴 𝘳𝘰𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘢𝘹𝘪𝘴, 𝘪𝘵 𝘤𝘢𝘯 𝘣𝘦𝘤𝘰𝘮𝘦 𝘢 𝘱𝘶𝘭𝘴𝘢𝘳. 𝘛𝘩𝘦𝘴𝘦 𝘱𝘶𝘭𝘴𝘢𝘳𝘴 𝘦𝘮𝘪𝘵 𝘣𝘦𝘢𝘮𝘴 𝘰𝘧 𝘦𝘭𝘦𝘤𝘵𝘳𝘰𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘳𝘢𝘥𝘪𝘢𝘵𝘪𝘰𝘯 𝘧𝘳𝘰𝘮 𝘵𝘩𝘦𝘪𝘳 𝘱𝘰𝘭𝘦𝘴, 𝘸𝘩𝘪𝘤𝘩 𝘤𝘢𝘯 𝘣𝘦 𝘰𝘣𝘴𝘦𝘳𝘷𝘦𝘥 𝘢𝘴 𝘱𝘶𝘭𝘴𝘦𝘥 𝘴𝘪𝘨𝘯𝘢𝘭𝘴 𝘸𝘩𝘦𝘯 𝘵𝘩𝘦𝘺 𝘴𝘸𝘦𝘦𝘱 𝘱𝘢𝘴𝘵 𝘵𝘩𝘦 𝘌𝘢𝘳𝘵𝘩, 𝘮𝘶𝘤𝘩 𝘭𝘪𝘬𝘦 𝘢 𝘭𝘪𝘨𝘩𝘵𝘩𝘰𝘶𝘴𝘦 𝘣𝘦𝘢𝘮.

𝘕𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘢𝘳𝘦 𝘪𝘯𝘤𝘳𝘦𝘥𝘪𝘣𝘭𝘦 𝘤𝘰𝘴𝘮𝘪𝘤 𝘳𝘦𝘭𝘪𝘤𝘴 𝘰𝘧 𝘮𝘢𝘴𝘴𝘪𝘷𝘦 𝘴𝘵𝘢𝘳𝘴 𝘵𝘩𝘢𝘵 𝘥𝘦𝘵𝘰𝘯𝘢𝘵𝘦𝘥 𝘪𝘯 𝘴𝘶𝘱𝘦𝘳𝘯𝘰𝘷𝘢 𝘦𝘹𝘱𝘭𝘰𝘴𝘪𝘰𝘯𝘴. 𝘞𝘪𝘵𝘩 𝘵𝘩𝘦𝘪𝘳 𝘦𝘯𝘰𝘳𝘮𝘰𝘶𝘴 𝘨𝘳𝘢𝘷𝘪𝘵𝘺, 𝘶𝘯𝘪𝘲𝘶𝘦 𝘤𝘰𝘮𝘱𝘰𝘴𝘪𝘵𝘪𝘰𝘯, 𝘢𝘯𝘥 𝘪𝘯𝘵𝘦𝘯𝘴𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴, 𝘵𝘩𝘦𝘺 𝘤𝘰𝘯𝘵𝘪𝘯𝘶𝘦 𝘵𝘰 𝘤𝘢𝘱𝘵𝘪𝘷𝘢𝘵𝘦 𝘢𝘴𝘵𝘳𝘰𝘯𝘰𝘮𝘦𝘳𝘴 𝘢𝘯𝘥 𝘱𝘳𝘰𝘷𝘪𝘥𝘦 𝘪𝘯𝘴𝘪𝘨𝘩𝘵 𝘪𝘯𝘵𝘰 𝘴𝘰𝘮𝘦 𝘰𝘧 𝘵𝘩𝘦 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘦’𝘴 𝘮𝘰𝘴𝘵 𝘦𝘹𝘵𝘳𝘦𝘮𝘦 𝘤𝘰𝘯𝘥𝘪𝘵𝘪𝘰𝘯𝘴.

𝐓𝐇𝐄 𝐂𝐑𝐄𝐀𝐓𝐈𝐎𝐍 𝐎𝐅 𝐀 𝐍𝐄𝐔𝐓𝐑𝐎𝐍 𝐒𝐓𝐀𝐑, 𝐈𝐍 𝐓𝐇𝐄 𝐀𝐅𝐓𝐄𝐑𝐌𝐀𝐓𝐇 𝐎𝐅 𝐀 𝐒𝐔𝐏𝐄𝐑𝐍𝐎𝐕𝐀
𝘛𝘩𝘦 𝘤𝘳𝘦𝘢𝘵𝘪𝘰𝘯 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘳𝘦𝘱𝘳𝘦𝘴𝘦𝘯𝘵𝘴 𝘢𝘯 𝘦𝘷𝘦𝘯𝘵 𝘰𝘧 𝘪𝘮𝘮𝘦𝘯𝘴𝘦 𝘤𝘰𝘴𝘮𝘪𝘤 𝘴𝘪𝘨𝘯𝘪𝘧𝘪𝘤𝘢𝘯𝘤𝘦 𝘢𝘯𝘥 𝘦𝘮𝘦𝘳𝘨𝘦𝘴 𝘥𝘪𝘳𝘦𝘤𝘵𝘭𝘺 𝘧𝘳𝘰𝘮 𝘵𝘩𝘦 𝘷𝘪𝘰𝘭𝘦𝘯𝘵 𝘦𝘯𝘥 𝘰𝘧 𝘢 𝘮𝘢𝘴𝘴𝘪𝘷𝘦 𝘴𝘵𝘢𝘳. 𝘛𝘩𝘪𝘴 𝘱𝘳𝘰𝘤𝘦𝘴𝘴 𝘰𝘤𝘤𝘶𝘳𝘴 𝘸𝘩𝘦𝘯 𝘢 𝘴𝘵𝘢𝘳 𝘸𝘪𝘵𝘩 𝘢 𝘮𝘪𝘯𝘪𝘮𝘶𝘮 𝘮𝘢𝘴𝘴 𝘰𝘧 𝘦𝘪𝘨𝘩𝘵 𝘴𝘰𝘭𝘢𝘳 𝘮𝘢𝘴𝘴𝘦𝘴 𝘥𝘦𝘱𝘭𝘦𝘵𝘦𝘴 𝘪𝘵𝘴 𝘯𝘶𝘤𝘭𝘦𝘢𝘳 𝘳𝘦𝘴𝘦𝘳𝘷𝘦𝘴. 𝘋𝘶𝘳𝘪𝘯𝘨 𝘪𝘵𝘴 𝘭𝘪𝘧𝘦𝘵𝘪𝘮𝘦, 𝘢 𝘴𝘵𝘢𝘳 𝘮𝘢𝘪𝘯𝘵𝘢𝘪𝘯𝘴 𝘢 𝘥𝘦𝘭𝘪𝘤𝘢𝘵𝘦 𝘣𝘢𝘭𝘢𝘯𝘤𝘦: 𝘵𝘩𝘦 𝘪𝘯𝘸𝘢𝘳𝘥 𝘱𝘶𝘭𝘭 𝘰𝘧 𝘨𝘳𝘢𝘷𝘪𝘵𝘺 𝘪𝘴 𝘱𝘳𝘦𝘤𝘪𝘴𝘦𝘭𝘺 𝘤𝘰𝘶𝘯𝘵𝘦𝘳𝘣𝘢𝘭𝘢𝘯𝘤𝘦𝘥 𝘣𝘺 𝘵𝘩𝘦 𝘰𝘶𝘵𝘸𝘢𝘳𝘥 𝘵𝘩𝘳𝘶𝘴𝘵 𝘨𝘦𝘯𝘦𝘳𝘢𝘵𝘦𝘥 𝘣𝘺 𝘯𝘶𝘤𝘭𝘦𝘢𝘳 𝘧𝘶𝘴𝘪𝘰𝘯 𝘳𝘦𝘢𝘤𝘵𝘪𝘰𝘯𝘴 𝘰𝘤𝘤𝘶𝘳𝘳𝘪𝘯𝘨 𝘪𝘯 𝘪𝘵𝘴 𝘤𝘰𝘳𝘦. 
𝘖𝘯𝘤𝘦 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳'𝘴 𝘧𝘶𝘦𝘭 𝘴𝘶𝘱𝘱𝘭𝘺 𝘥𝘪𝘮𝘪𝘯𝘪𝘴𝘩𝘦𝘴, 𝘪𝘵 𝘤𝘢𝘯 𝘯𝘰 𝘭𝘰𝘯𝘨𝘦𝘳 𝘴𝘶𝘴𝘵𝘢𝘪𝘯 𝘵𝘩𝘪𝘴 𝘧𝘶𝘴𝘪𝘰𝘯, 𝘢𝘯𝘥 𝘤𝘰𝘯𝘴𝘦𝘲𝘶𝘦𝘯𝘵𝘭𝘺, 𝘵𝘩𝘦 𝘦𝘲𝘶𝘪𝘭𝘪𝘣𝘳𝘪𝘶𝘮 𝘪𝘴 𝘥𝘪𝘴𝘳𝘶𝘱𝘵𝘦𝘥.

𝘛𝘩𝘦 𝘳𝘦𝘴𝘶𝘭𝘵 𝘰𝘧 𝘵𝘩𝘪𝘴 𝘪𝘮𝘣𝘢𝘭𝘢𝘯𝘤𝘦 𝘪𝘴 𝘥𝘳𝘢𝘮𝘢𝘵𝘪𝘤. 𝘐𝘯 𝘵𝘩𝘦 𝘢𝘣𝘴𝘦𝘯𝘤𝘦 𝘰𝘧 𝘧𝘶𝘴𝘪𝘰𝘯'𝘴 𝘰𝘶𝘵𝘸𝘢𝘳𝘥 𝘱𝘳𝘦𝘴𝘴𝘶𝘳𝘦, 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘧𝘰𝘳𝘤𝘦𝘴 𝘳𝘢𝘱𝘪𝘥𝘭𝘺 𝘥𝘰𝘮𝘪𝘯𝘢𝘵𝘦, 𝘭𝘦𝘢𝘥𝘪𝘯𝘨 𝘵𝘰 𝘵𝘩𝘦 𝘴𝘶𝘳𝘱𝘳𝘪𝘴𝘪𝘯𝘨𝘭𝘺 𝘴𝘸𝘪𝘧𝘵 𝘤𝘰𝘭𝘭𝘢𝘱𝘴𝘦 𝘰𝘧 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳'𝘴 𝘤𝘰𝘳𝘦 𝘪𝘯 𝘢 𝘮𝘢𝘵𝘵𝘦𝘳 𝘰𝘧 𝘴𝘦𝘤𝘰𝘯𝘥𝘴. 
𝘛𝘩𝘪𝘴 𝘪𝘮𝘱𝘭𝘰𝘴𝘪𝘰𝘯 𝘪𝘴 𝘴𝘰 𝘱𝘰𝘸𝘦𝘳𝘧𝘶𝘭 𝘵𝘩𝘢𝘵 𝘪𝘵 𝘵𝘳𝘪𝘨𝘨𝘦𝘳𝘴 𝘢 𝘤𝘰𝘭𝘰𝘴𝘴𝘢𝘭 𝘦𝘹𝘱𝘭𝘰𝘴𝘪𝘰𝘯 𝘪𝘯 𝘵𝘩𝘦 𝘴𝘶𝘳𝘳𝘰𝘶𝘯𝘥𝘪𝘯𝘨 𝘰𝘶𝘵𝘦𝘳 𝘭𝘢𝘺𝘦𝘳𝘴 𝘰𝘧 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳, 𝘵𝘩𝘪𝘴 𝘦𝘷𝘦𝘯𝘵 𝘪𝘴 𝘤𝘢𝘭𝘭𝘦𝘥 𝘢 𝘴𝘶𝘱𝘦𝘳𝘯𝘰𝘷𝘢. 𝘛𝘩𝘦 𝘴𝘶𝘱𝘦𝘳𝘯𝘰𝘷𝘢 𝘪𝘴 𝘭𝘶𝘮𝘪𝘯𝘰𝘶𝘴 𝘢𝘯𝘥 𝘦𝘯𝘦𝘳𝘨𝘦𝘵𝘪𝘤, 𝘵𝘦𝘮𝘱𝘰𝘳𝘢𝘳𝘪𝘭𝘺 𝘰𝘶𝘵𝘴𝘩𝘪𝘯𝘪𝘯𝘨 𝘸𝘩𝘰𝘭𝘦 𝘨𝘢𝘭𝘢𝘹𝘪𝘦𝘴 𝘢𝘯𝘥 𝘥𝘪𝘴𝘴𝘦𝘮𝘪𝘯𝘢𝘵𝘪𝘯𝘨 𝘩𝘦𝘢𝘷𝘺 𝘦𝘭𝘦𝘮𝘦𝘯𝘵𝘴 𝘪𝘯𝘵𝘰 𝘵𝘩𝘦 𝘤𝘰𝘴𝘮𝘰𝘴, 𝘸𝘩𝘪𝘤𝘩 𝘢𝘳𝘦 𝘤𝘳𝘶𝘤𝘪𝘢𝘭 𝘧𝘰𝘳 𝘵𝘩𝘦 𝘧𝘰𝘳𝘮𝘢𝘵𝘪𝘰𝘯 𝘰𝘧 𝘯𝘦𝘸 𝘴𝘵𝘢𝘳𝘴, 𝘱𝘭𝘢𝘯𝘦𝘵𝘴, 𝘢𝘯𝘥 𝘦𝘷𝘦𝘯 𝘭𝘪𝘧𝘦.

𝘐𝘯 𝘵𝘩𝘦 𝘢𝘧𝘵𝘦𝘳𝘮𝘢𝘵𝘩 𝘰𝘧 𝘵𝘩𝘪𝘴 𝘴𝘶𝘱𝘦𝘳𝘯𝘰𝘷𝘢, 𝘪𝘧 𝘵𝘩𝘦 𝘤𝘰𝘭𝘭𝘢𝘱𝘴𝘦𝘥 𝘤𝘰𝘳𝘦 𝘰𝘧 𝘵𝘩𝘦 𝘰𝘳𝘪𝘨𝘪𝘯𝘢𝘭 𝘴𝘵𝘢𝘳 𝘩𝘢𝘴 𝘢 𝘮𝘢𝘴𝘴 𝘵𝘩𝘢𝘵 𝘧𝘢𝘭𝘭𝘴 𝘪𝘯 𝘵𝘩𝘦 𝘤𝘳𝘪𝘵𝘪𝘤𝘢𝘭 𝘳𝘢𝘯𝘨𝘦 𝘣𝘦𝘵𝘸𝘦𝘦𝘯 𝘳𝘰𝘶𝘨𝘩𝘭𝘺 1.4 𝘢𝘯𝘥 3 𝘵𝘪𝘮𝘦𝘴 𝘵𝘩𝘢𝘵 𝘰𝘧 𝘰𝘶𝘳 𝘰𝘸𝘯 𝘚𝘶𝘯, 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘣𝘰𝘳𝘯. 𝘈 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘢 𝘤𝘦𝘭𝘦𝘴𝘵𝘪𝘢𝘭 𝘣𝘰𝘥𝘺 𝘰𝘧 𝘦𝘹𝘵𝘳𝘢𝘰𝘳𝘥𝘪𝘯𝘢𝘳𝘺 𝘥𝘦𝘯𝘴𝘪𝘵𝘺, 𝘸𝘩𝘦𝘳𝘦 𝘱𝘳𝘰𝘵𝘰𝘯𝘴 𝘢𝘯𝘥 𝘦𝘭𝘦𝘤𝘵𝘳𝘰𝘯𝘴 𝘢𝘳𝘦 𝘴𝘲𝘶𝘦𝘦𝘻𝘦𝘥 𝘵𝘰𝘨𝘦𝘵𝘩𝘦𝘳 𝘵𝘰 𝘧𝘰𝘳𝘮 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴 𝘶𝘯𝘥𝘦𝘳 𝘵𝘩𝘦 𝘦𝘹𝘵𝘳𝘦𝘮𝘦 𝘤𝘰𝘯𝘥𝘪𝘵𝘪𝘰𝘯𝘴 𝘰𝘧 𝘱𝘳𝘦𝘴𝘴𝘶𝘳𝘦. 
𝘈𝘴 𝘱𝘳𝘦𝘷𝘪𝘰𝘶𝘴𝘭𝘺 𝘮𝘦𝘯𝘵𝘪𝘰𝘯𝘦𝘥 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘦𝘹𝘵𝘳𝘦𝘮𝘦𝘭𝘺 𝘤𝘰𝘮𝘱𝘢𝘤𝘵, 𝘸𝘪𝘵𝘩 𝘢 𝘥𝘪𝘢𝘮𝘦𝘵𝘦𝘳 𝘵𝘺𝘱𝘪𝘤𝘢𝘭𝘭𝘺 𝘢𝘣𝘰𝘶𝘵 20 𝘬𝘪𝘭𝘰𝘮𝘦𝘵𝘦𝘳𝘴 𝘪𝘯 𝘥𝘪𝘢𝘮𝘦𝘵𝘦𝘳, 𝘣𝘶𝘵 𝘵𝘩𝘦𝘺 𝘴𝘵𝘪𝘭𝘭 𝘱𝘰𝘴𝘴𝘦𝘴𝘴 𝘮𝘰𝘳𝘦 𝘮𝘢𝘴𝘴 𝘵𝘩𝘢𝘯 𝘰𝘶𝘳 𝘰𝘸𝘯 𝘴𝘵𝘢𝘳 𝘵𝘩𝘦 𝘚𝘶𝘯.

𝐓𝐇𝐄 𝐆𝐑𝐀𝐕𝐈𝐓𝐀𝐓𝐈𝐎𝐍𝐀𝐋 𝐀𝐓𝐓𝐑𝐀𝐂𝐓𝐈𝐎𝐍 𝐅𝐑𝐎𝐌 𝐍𝐄𝐔𝐓𝐑𝐎𝐍 𝐒𝐓𝐀𝐑𝐒
𝘕𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘢𝘳𝘦 𝘢𝘴𝘵𝘳𝘰𝘯𝘰𝘮𝘪𝘤𝘢𝘭 𝘸𝘰𝘯𝘥𝘦𝘳𝘴, 𝘦𝘱𝘪𝘵𝘰𝘮𝘪𝘴𝘪𝘯𝘨 𝘵𝘩𝘦 𝘤𝘰𝘯𝘤𝘦𝘱𝘵 𝘰𝘧 𝘥𝘦𝘯𝘴𝘪𝘵𝘺 𝘣𝘺 𝘴𝘲𝘶𝘦𝘦𝘻𝘪𝘯𝘨 𝘢 𝘮𝘢𝘴𝘴 𝘤𝘰𝘮𝘱𝘢𝘳𝘢𝘣𝘭𝘦 𝘵𝘰 𝘵𝘩𝘢𝘵 𝘰𝘧 𝘵𝘩𝘦 𝘴𝘶𝘯—𝘢𝘱𝘱𝘳𝘰𝘹𝘪𝘮𝘢𝘵𝘦𝘭𝘺 1.4 𝘵𝘪𝘮𝘦𝘴 𝘪𝘵𝘴 𝘮𝘢𝘨𝘯𝘪𝘵𝘶𝘥𝘦—𝘪𝘯𝘵𝘰 𝘢 𝘨𝘭𝘰𝘣𝘦 𝘸𝘪𝘵𝘩 𝘢 𝘥𝘪𝘢𝘮𝘦𝘵𝘦𝘳 𝘯𝘦𝘢𝘳 20 𝘬𝘪𝘭𝘰𝘮𝘦𝘵𝘦𝘳𝘴. 𝘛𝘩𝘪𝘴 𝘳𝘦𝘮𝘢𝘳𝘬𝘢𝘣𝘭𝘦 𝘤𝘰𝘮𝘱𝘢𝘤𝘵𝘪𝘰𝘯 𝘰𝘧 𝘮𝘢𝘴𝘴 𝘨𝘪𝘷𝘦𝘴 𝘳𝘪𝘴𝘦 𝘵𝘰 𝘢 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘧𝘪𝘦𝘭𝘥 𝘰𝘧 𝘪𝘯𝘤𝘳𝘦𝘥𝘪𝘣𝘭𝘦 𝘴𝘵𝘳𝘦𝘯𝘨𝘵𝘩. 

𝘛𝘰 𝘪𝘭𝘭𝘶𝘴𝘵𝘳𝘢𝘵𝘦, 𝘪𝘮𝘢𝘨𝘪𝘯𝘦 𝘴𝘵𝘢𝘯𝘥𝘪𝘯𝘨 𝘰𝘯 𝘵𝘩𝘦 𝘱𝘳𝘦𝘤𝘪𝘱𝘪𝘤𝘦 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳. 𝘛𝘩𝘦 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘱𝘶𝘭𝘭 𝘰𝘯 𝘺𝘰𝘶𝘳 𝘣𝘰𝘥𝘺 𝘸𝘰𝘶𝘭𝘥 𝘣𝘦 𝘦𝘯𝘰𝘳𝘮𝘰𝘶𝘴𝘭𝘺 𝘮𝘰𝘳𝘦 𝘱𝘰𝘸𝘦𝘳𝘧𝘶𝘭 𝘵𝘩𝘢𝘯 𝘵𝘩𝘢𝘵 𝘦𝘹𝘱𝘦𝘳𝘪𝘦𝘯𝘤𝘦𝘥 𝘰𝘯 𝘌𝘢𝘳𝘵𝘩—𝘢𝘳𝘰𝘶𝘯𝘥 200 𝘣𝘪𝘭𝘭𝘪𝘰𝘯 𝘵𝘪𝘮𝘦𝘴 𝘨𝘳𝘦𝘢𝘵𝘦𝘳. 𝘛𝘩𝘪𝘴 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘧𝘰𝘳𝘤𝘦 𝘪𝘴 𝘴𝘰 𝘪𝘯𝘵𝘦𝘯𝘴𝘦 𝘵𝘩𝘢𝘵 𝘪𝘧 𝘢𝘯 𝘰𝘣𝘫𝘦𝘤𝘵 𝘸𝘦𝘳𝘦 𝘵𝘰 𝘧𝘢𝘭𝘭 𝘧𝘳𝘰𝘮 𝘫𝘶𝘴𝘵 𝘰𝘯𝘦 𝘮𝘦𝘵𝘦𝘳 𝘢𝘸𝘢𝘺 𝘧𝘳𝘰𝘮 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳'𝘴 𝘴𝘶𝘳𝘧𝘢𝘤𝘦, 𝘪𝘵 𝘸𝘰𝘶𝘭𝘥 𝘩𝘪𝘵 𝘵𝘩𝘦 𝘨𝘳𝘰𝘶𝘯𝘥 𝘢𝘭𝘮𝘰𝘴𝘵 𝘪𝘯𝘴𝘵𝘢𝘯𝘵𝘢𝘯𝘦𝘰𝘶𝘴𝘭𝘺, 𝘢𝘵 𝘢 𝘴𝘱𝘦𝘦𝘥 𝘰𝘧 𝘮𝘪𝘭𝘭𝘪𝘰𝘯𝘴 𝘰𝘧 𝘬𝘪𝘭𝘰𝘮𝘦𝘵𝘦𝘳𝘴 𝘱𝘦𝘳 𝘩𝘰𝘶𝘳, 𝘥𝘶𝘦 𝘵𝘰 𝘵𝘩𝘦 𝘰𝘷𝘦𝘳𝘸𝘩𝘦𝘭𝘮𝘪𝘯𝘨 𝘢𝘤𝘤𝘦𝘭𝘦𝘳𝘢𝘵𝘪𝘰𝘯 𝘱𝘳𝘰𝘥𝘶𝘤𝘦𝘥 𝘣𝘺 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳'𝘴 𝘨𝘳𝘢𝘷𝘪𝘵𝘺.

𝘋𝘦𝘴𝘱𝘪𝘵𝘦 𝘵𝘩𝘪𝘴 𝘶𝘯𝘪𝘮𝘢𝘨𝘪𝘯𝘢𝘣𝘭𝘦 𝘧𝘰𝘳𝘤𝘦 𝘦𝘹𝘱𝘦𝘳𝘪𝘦𝘯𝘤𝘦𝘥 𝘢𝘵 𝘤𝘭𝘰𝘴𝘦 𝘲𝘶𝘢𝘳𝘵𝘦𝘳𝘴, 𝘵𝘩𝘦 𝘳𝘦𝘢𝘤𝘩 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳'𝘴 𝘨𝘳𝘢𝘷𝘪𝘵𝘺 𝘪𝘴 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘦𝘭𝘺 𝘴𝘩𝘰𝘳𝘵-𝘳𝘢𝘯𝘨𝘦𝘥 𝘸𝘩𝘦𝘯 𝘤𝘰𝘮𝘱𝘢𝘳𝘦𝘥 𝘸𝘪𝘵𝘩 𝘭𝘢𝘳𝘨𝘦𝘳 𝘤𝘦𝘭𝘦𝘴𝘵𝘪𝘢𝘭 𝘣𝘰𝘥𝘪𝘦𝘴 𝘭𝘪𝘬𝘦 𝘯𝘰𝘳𝘮𝘢𝘭 𝘴𝘵𝘢𝘳𝘴 𝘰𝘳 𝘱𝘭𝘢𝘯𝘦𝘵𝘴. 𝘛𝘩𝘦 𝘳𝘦𝘢𝘴𝘰𝘯 𝘭𝘪𝘦𝘴 𝘪𝘯 𝘪𝘵𝘴 𝘮𝘪𝘯𝘶𝘵𝘦 𝘴𝘪𝘻𝘦: 𝘈𝘴 𝘺𝘰𝘶 𝘮𝘰𝘷𝘦 𝘢𝘸𝘢𝘺 𝘧𝘳𝘰𝘮 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳, 𝘵𝘩𝘦 𝘴𝘵𝘳𝘦𝘯𝘨𝘵𝘩 𝘰𝘧 𝘪𝘵𝘴 𝘨𝘳𝘢𝘷𝘪𝘵𝘺 𝘥𝘦𝘤𝘳𝘦𝘢𝘴𝘦𝘴 𝘦𝘹𝘱𝘰𝘯𝘦𝘯𝘵𝘪𝘢𝘭𝘭𝘺. 𝘑𝘶𝘴𝘵 𝘢 𝘧𝘦𝘸 𝘬𝘪𝘭𝘰𝘮𝘦𝘵𝘦𝘳𝘴 𝘧𝘳𝘰𝘮 𝘵𝘩𝘦 𝘴𝘶𝘳𝘧𝘢𝘤𝘦, 𝘵𝘩𝘦 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘪𝘯𝘧𝘭𝘶𝘦𝘯𝘤𝘦 𝘪𝘴 𝘢𝘭𝘳𝘦𝘢𝘥𝘺 𝘴𝘪𝘨𝘯𝘪𝘧𝘪𝘤𝘢𝘯𝘵𝘭𝘺 𝘭𝘦𝘴𝘴𝘦𝘯𝘦𝘥. 𝘋𝘶𝘦 𝘵𝘰 𝘢 𝘕𝘦𝘶𝘵𝘳𝘰𝘯𝘴 𝘴𝘵𝘢𝘳𝘴 𝘤𝘢𝘱𝘢𝘣𝘪𝘭𝘪𝘵𝘺 𝘵𝘰 𝘣𝘦𝘯𝘥 𝘴𝘱𝘢𝘤𝘦𝘵𝘪𝘮𝘦 𝘣𝘦𝘤𝘢𝘶𝘴𝘦 𝘰𝘧 𝘦𝘯𝘦𝘳𝘨𝘺 𝘢𝘯𝘥 𝘮𝘢𝘵𝘵𝘦𝘳 𝘰𝘯𝘦 𝘩𝘢𝘷𝘦 𝘵𝘰 𝘶𝘴𝘦 𝘛𝘩𝘦 𝘎𝘦𝘯𝘦𝘳𝘢𝘭 𝘛𝘩𝘦𝘰𝘳𝘺 𝘰𝘧 𝘙𝘦𝘭𝘢𝘵𝘪𝘷𝘪𝘵𝘺 𝘵𝘰 𝘥𝘰 𝘤𝘢𝘭𝘤𝘶𝘭𝘢𝘵𝘪𝘰𝘯𝘴 𝘰𝘯 𝘢 𝘕𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴. 

𝘛𝘩𝘦 𝘳𝘢𝘱𝘪𝘥 𝘧𝘢𝘭𝘭𝘰𝘧𝘧 𝘰𝘧 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘴𝘵𝘳𝘦𝘯𝘨𝘵𝘩 𝘸𝘪𝘵𝘩 𝘥𝘪𝘴𝘵𝘢𝘯𝘤𝘦 𝘧𝘳𝘰𝘮 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘰𝘯𝘦 𝘢𝘴𝘱𝘦𝘤𝘵 𝘵𝘩𝘢𝘵 𝘶𝘯𝘥𝘦𝘳𝘴𝘤𝘰𝘳𝘦𝘴 𝘵𝘩𝘦𝘪𝘳 𝘶𝘯𝘶𝘴𝘶𝘢𝘭 𝘯𝘢𝘵𝘶𝘳𝘦 𝘢𝘯𝘥 𝘦𝘹𝘦𝘮𝘱𝘭𝘪𝘧𝘪𝘦𝘴 𝘵𝘩𝘦 𝘤𝘶𝘳𝘪𝘰𝘶𝘴 𝘮𝘦𝘤𝘩𝘢𝘯𝘪𝘤𝘴 𝘨𝘰𝘷𝘦𝘳𝘯𝘪𝘯𝘨 𝘰𝘣𝘫𝘦𝘤𝘵𝘴 𝘰𝘧 𝘦𝘹𝘵𝘳𝘦𝘮𝘦 𝘥𝘦𝘯𝘴𝘪𝘵𝘺. 𝘛𝘩𝘶𝘴, 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘴𝘵𝘢𝘯𝘥 𝘢𝘴 𝘰𝘣𝘫𝘦𝘤𝘵𝘴 𝘰𝘧 𝘴𝘪𝘨𝘯𝘪𝘧𝘪𝘤𝘢𝘯𝘵 𝘴𝘤𝘪𝘦𝘯𝘵𝘪𝘧𝘪𝘤 𝘪𝘯𝘵𝘦𝘳𝘦𝘴𝘵, 𝘱𝘳𝘰𝘷𝘪𝘥𝘪𝘯𝘨 𝘢 𝘸𝘪𝘯𝘥𝘰𝘸 𝘪𝘯𝘵𝘰 𝘵𝘩𝘦 𝘭𝘢𝘸𝘴 𝘰𝘧 𝘱𝘩𝘺𝘴𝘪𝘤𝘴 𝘶𝘯𝘥𝘦𝘳 𝘤𝘰𝘯𝘥𝘪𝘵𝘪𝘰𝘯𝘴 𝘶𝘯𝘢𝘵𝘵𝘢𝘪𝘯𝘢𝘣𝘭𝘦 𝘰𝘯 𝘌𝘢𝘳𝘵𝘩.

𝐓𝐇𝐄 𝐍𝐄𝐔𝐓𝐑𝐀𝐋𝐋𝐘 𝐂𝐇𝐀𝐑𝐆𝐄𝐃 𝐁𝐔𝐈𝐋𝐃𝐈𝐍𝐆 𝐁𝐋𝐎𝐂𝐒
𝘛𝘩𝘦 𝘵𝘦𝘳𝘮 "𝘯𝘦𝘶𝘵𝘳𝘢𝘭𝘭𝘺 𝘤𝘩𝘢𝘳𝘨𝘦𝘥 𝘣𝘶𝘪𝘭𝘥𝘪𝘯𝘨 𝘣𝘭𝘰𝘤𝘬𝘴" 𝘳𝘦𝘧𝘦𝘳𝘴 𝘵𝘰 𝘵𝘩𝘦 𝘧𝘶𝘯𝘥𝘢𝘮𝘦𝘯𝘵𝘢𝘭 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴 𝘬𝘯𝘰𝘸𝘯 𝘢𝘴 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴 𝘵𝘩𝘢𝘵 𝘮𝘢𝘬𝘦 𝘶𝘱 𝘢 𝘴𝘶𝘣𝘴𝘵𝘢𝘯𝘵𝘪𝘢𝘭 𝘱𝘢𝘳𝘵 𝘰𝘧 𝘵𝘩𝘦 𝘪𝘯𝘵𝘦𝘳𝘯𝘢𝘭 𝘴𝘵𝘳𝘶𝘤𝘵𝘶𝘳𝘦 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳. 𝘛𝘩𝘦𝘴𝘦 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴 𝘢𝘳𝘦 𝘥𝘦𝘴𝘤𝘳𝘪𝘣𝘦𝘥 𝘢𝘴 '𝘯𝘦𝘶𝘵𝘳𝘢𝘭𝘭𝘺 𝘤𝘩𝘢𝘳𝘨𝘦𝘥' 𝘣𝘦𝘤𝘢𝘶𝘴𝘦, 𝘶𝘯𝘭𝘪𝘬𝘦 𝘱𝘳𝘰𝘵𝘰𝘯𝘴 𝘸𝘩𝘪𝘤𝘩 𝘤𝘢𝘳𝘳𝘺 𝘢 𝘱𝘰𝘴𝘪𝘵𝘪𝘷𝘦 𝘤𝘩𝘢𝘳𝘨𝘦, 𝘰𝘳 𝘦𝘭𝘦𝘤𝘵𝘳𝘰𝘯𝘴 𝘸𝘩𝘪𝘤𝘩 𝘤𝘢𝘳𝘳𝘺 𝘢 𝘯𝘦𝘨𝘢𝘵𝘪𝘷𝘦 𝘤𝘩𝘢𝘳𝘨𝘦, 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴 𝘩𝘢𝘷𝘦 𝘯𝘰 𝘦𝘭𝘦𝘤𝘵𝘳𝘪𝘤 𝘤𝘩𝘢𝘳𝘨𝘦. 𝘛𝘩𝘦𝘺 𝘢𝘳𝘦 𝘯𝘦𝘶𝘵𝘳𝘢𝘭 𝘪𝘯 𝘵𝘦𝘳𝘮𝘴 𝘰𝘧 𝘦𝘭𝘦𝘤𝘵𝘳𝘪𝘤𝘢𝘭 𝘤𝘩𝘢𝘳𝘨𝘦.

𝘕𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘥𝘦𝘳𝘪𝘷𝘦 𝘵𝘩𝘦𝘪𝘳 𝘯𝘢𝘮𝘦 𝘧𝘳𝘰𝘮 𝘵𝘩𝘦𝘪𝘳 𝘮𝘢𝘪𝘯 𝘤𝘰𝘯𝘴𝘵𝘪𝘵𝘶𝘦𝘯𝘵 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴, 𝘸𝘩𝘪𝘤𝘩 𝘢𝘳𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴. 𝘛𝘩𝘦𝘴𝘦 𝘤𝘦𝘭𝘦𝘴𝘵𝘪𝘢𝘭 𝘣𝘰𝘥𝘪𝘦𝘴 𝘢𝘳𝘦 𝘵𝘩𝘦 𝘳𝘦𝘮𝘯𝘢𝘯𝘵𝘴 𝘰𝘧 𝘮𝘢𝘴𝘴𝘪𝘷𝘦 𝘴𝘵𝘢𝘳𝘴 𝘵𝘩𝘢𝘵 𝘩𝘢𝘷𝘦 𝘶𝘯𝘥𝘦𝘳𝘨𝘰𝘯𝘦 𝘴𝘶𝘱𝘦𝘳𝘯𝘰𝘷𝘢 𝘦𝘹𝘱𝘭𝘰𝘴𝘪𝘰𝘯𝘴. 𝘈𝘧𝘵𝘦𝘳 𝘵𝘩𝘦 𝘰𝘶𝘵𝘦𝘳 𝘭𝘢𝘺𝘦𝘳𝘴 𝘰𝘧 𝘢 𝘴𝘵𝘢𝘳 𝘩𝘢𝘷𝘦 𝘣𝘦𝘦𝘯 𝘣𝘭𝘰𝘸𝘯 𝘢𝘸𝘢𝘺, 𝘵𝘩𝘦 𝘤𝘰𝘳𝘦 𝘤𝘰𝘭𝘭𝘢𝘱𝘴𝘦𝘴 𝘶𝘯𝘥𝘦𝘳 𝘵𝘩𝘦 𝘪𝘯𝘤𝘳𝘦𝘥𝘪𝘣𝘭𝘦 𝘱𝘶𝘭𝘭 𝘰𝘧 𝘪𝘵𝘴 𝘰𝘸𝘯 𝘨𝘳𝘢𝘷𝘪𝘵𝘺. 𝘛𝘩𝘪𝘴 𝘧𝘰𝘳𝘤𝘦 𝘪𝘴 𝘴𝘰 𝘴𝘵𝘳𝘰𝘯𝘨 𝘵𝘩𝘢𝘵 𝘪𝘵 𝘱𝘳𝘦𝘴𝘴𝘦𝘴 𝘵𝘩𝘦 𝘤𝘰𝘳𝘦'𝘴 𝘱𝘳𝘰𝘵𝘰𝘯𝘴 𝘢𝘯𝘥 𝘦𝘭𝘦𝘤𝘵𝘳𝘰𝘯𝘴 𝘵𝘰𝘨𝘦𝘵𝘩𝘦𝘳, 𝘧𝘶𝘴𝘪𝘯𝘨 𝘵𝘩𝘦𝘮 𝘵𝘰 𝘧𝘰𝘳𝘮 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴, 𝘭𝘦𝘢𝘥𝘪𝘯𝘨 𝘵𝘰 𝘵𝘩𝘦 𝘤𝘳𝘦𝘢𝘵𝘪𝘰𝘯 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳.

𝘛𝘩𝘦 𝘥𝘦𝘴𝘤𝘳𝘪𝘱𝘵𝘪𝘰𝘯 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳'𝘴 𝘢𝘯𝘢𝘵𝘰𝘮𝘺 𝘣𝘦𝘨𝘪𝘯𝘴 𝘸𝘪𝘵𝘩 𝘪𝘵𝘴 𝘰𝘶𝘵𝘦𝘳𝘮𝘰𝘴𝘵 𝘭𝘢𝘺𝘦𝘳, 𝘵𝘩𝘦 𝘤𝘳𝘶𝘴𝘵. 𝘛𝘩𝘦 𝘤𝘳𝘶𝘴𝘵 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘦𝘭𝘺 𝘵𝘩𝘪𝘯, 𝘴𝘵𝘳𝘦𝘵𝘤𝘩𝘪𝘯𝘨 𝘰𝘯𝘭𝘺 𝘢 𝘧𝘦𝘸 𝘬𝘪𝘭𝘰𝘮𝘦𝘵𝘦𝘳𝘴 𝘪𝘯 𝘥𝘦𝘱𝘵𝘩. 𝘋𝘦𝘴𝘱𝘪𝘵𝘦 𝘪𝘵𝘴 𝘯𝘢𝘮𝘦, 𝘵𝘩𝘪𝘴 𝘦𝘹𝘵𝘦𝘳𝘯𝘢𝘭 𝘴𝘩𝘦𝘭𝘭 𝘪𝘴 𝘦𝘹𝘵𝘳𝘢𝘰𝘳𝘥𝘪𝘯𝘢𝘳𝘪𝘭𝘺 𝘥𝘦𝘯𝘴𝘦 𝘢𝘯𝘥 𝘪𝘴 𝘤𝘰𝘮𝘱𝘰𝘴𝘦𝘥 𝘰𝘧 𝘢𝘵𝘰𝘮𝘪𝘤 𝘯𝘶𝘤𝘭𝘦𝘪 𝘵𝘩𝘢𝘵 𝘢𝘳𝘦 𝘴𝘶𝘣𝘮𝘦𝘳𝘨𝘦𝘥 𝘪𝘯 𝘢 𝘥𝘦𝘯𝘴𝘦 𝘧𝘭𝘶𝘪𝘥 𝘰𝘧 𝘦𝘭𝘦𝘤𝘵𝘳𝘰𝘯𝘴. 𝘛𝘩𝘦𝘴𝘦 𝘤𝘩𝘢𝘳𝘨𝘦𝘥 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴 𝘩𝘢𝘷𝘦 𝘣𝘦𝘦𝘯 𝘱𝘶𝘴𝘩𝘦𝘥 𝘰𝘶𝘵 𝘰𝘧 𝘵𝘩𝘦 𝘯𝘶𝘤𝘭𝘦𝘪 𝘥𝘶𝘦 𝘵𝘰 𝘵𝘩𝘦 𝘪𝘮𝘮𝘦𝘯𝘴𝘦 𝘱𝘳𝘦𝘴𝘴𝘶𝘳𝘦𝘴 𝘪𝘯𝘴𝘪𝘥𝘦 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳.

𝘋𝘦𝘦𝘱𝘦𝘳 𝘵𝘩𝘢𝘯 𝘵𝘩𝘦 𝘤𝘳𝘶𝘴𝘵 𝘪𝘴 𝘸𝘩𝘢𝘵 𝘪𝘴 𝘤𝘰𝘮𝘮𝘰𝘯𝘭𝘺 𝘳𝘦𝘧𝘦𝘳𝘳𝘦𝘥 𝘵𝘰 𝘢𝘴 '𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘪𝘶𝘮.' 𝘛𝘩𝘪𝘴 𝘪𝘴 𝘵𝘩𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯-𝘳𝘪𝘤𝘩 𝘤𝘰𝘳𝘦 𝘰𝘧 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳, 𝘸𝘩𝘪𝘤𝘩 𝘣𝘦𝘩𝘢𝘷𝘦𝘴 𝘢𝘴 𝘢 𝘴𝘶𝘱𝘦𝘳𝘧𝘭𝘶𝘪𝘥. 𝘚𝘶𝘱𝘦𝘳𝘧𝘭𝘶𝘪𝘥𝘪𝘵𝘺 𝘪𝘴 𝘢 𝘴𝘵𝘢𝘵𝘦 𝘰𝘧 𝘮𝘢𝘵𝘵𝘦𝘳 𝘤𝘩𝘢𝘳𝘢𝘤𝘵𝘦𝘳𝘪𝘴𝘦𝘥 𝘣𝘺 𝘵𝘩𝘦 𝘭𝘢𝘤𝘬 𝘰𝘧 𝘷𝘪𝘴𝘤𝘰𝘴𝘪𝘵𝘺, 𝘰𝘳 𝘳𝘦𝘴𝘪𝘴𝘵𝘢𝘯𝘤𝘦 𝘵𝘰 𝘧𝘭𝘰𝘸. 𝘐𝘯 𝘵𝘩𝘪𝘴 𝘴𝘵𝘢𝘵𝘦, 𝘵𝘩𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯-𝘳𝘪𝘤𝘩 𝘴𝘶𝘣𝘴𝘵𝘢𝘯𝘤𝘦 𝘤𝘢𝘯 𝘧𝘭𝘰𝘸 𝘸𝘪𝘵𝘩𝘰𝘶𝘵 𝘧𝘳𝘪𝘤𝘵𝘪𝘰𝘯 𝘢𝘯𝘥 𝘱𝘰𝘴𝘴𝘦𝘴𝘴𝘦𝘴 𝘦𝘹𝘰𝘵𝘪𝘤 𝘱𝘳𝘰𝘱𝘦𝘳𝘵𝘪𝘦𝘴 𝘵𝘩𝘢𝘵 𝘢𝘳𝘦 𝘴𝘵𝘪𝘭𝘭 𝘢 𝘴𝘶𝘣𝘫𝘦𝘤𝘵 𝘰𝘧 𝘢𝘤𝘵𝘪𝘷𝘦 𝘳𝘦𝘴𝘦𝘢𝘳𝘤𝘩 𝘪𝘯 𝘱𝘩𝘺𝘴𝘪𝘤𝘴.

𝘈𝘵 𝘵𝘩𝘦 𝘤𝘰𝘳𝘦 𝘭𝘪𝘦 𝘵𝘩𝘦 𝘮𝘰𝘴𝘵 𝘦𝘹𝘵𝘳𝘦𝘮𝘦 𝘤𝘰𝘯𝘥𝘪𝘵𝘪𝘰𝘯𝘴 𝘢𝘯𝘥, 𝘢𝘴 𝘴𝘰𝘮𝘦 𝘵𝘩𝘦𝘰𝘳𝘪𝘦𝘴 𝘱𝘳𝘰𝘱𝘰𝘴𝘦, 𝘱𝘰𝘵𝘦𝘯𝘵𝘪𝘢𝘭𝘭𝘺 𝘵𝘩𝘦 𝘮𝘰𝘴𝘵 𝘦𝘹𝘰𝘵𝘪𝘤 𝘧𝘰𝘳𝘮𝘴 𝘰𝘧 𝘮𝘢𝘵𝘵𝘦𝘳. 𝘐𝘯 𝘵𝘩𝘦 𝘥𝘦𝘦𝘱𝘦𝘴𝘵 𝘳𝘦𝘤𝘦𝘴𝘴𝘦𝘴 𝘰𝘧 𝘵𝘩𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳, 𝘣𝘦𝘺𝘰𝘯𝘥 𝘵𝘩𝘦 '𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘪𝘶𝘮', 𝘵𝘩𝘦𝘳𝘦 𝘮𝘪𝘨𝘩𝘵 𝘦𝘹𝘪𝘴𝘵 𝘢 𝘤𝘰𝘳𝘦 𝘰𝘧 𝘲𝘶𝘢𝘳𝘬-𝘨𝘭𝘶𝘰𝘯 𝘱𝘭𝘢𝘴𝘮𝘢. 𝘛𝘩𝘪𝘴 𝘦𝘹𝘵𝘳𝘢𝘰𝘳𝘥𝘪𝘯𝘢𝘳𝘺 𝘢𝘯𝘥 𝘦𝘹𝘰𝘵𝘪𝘤 𝘱𝘩𝘢𝘴𝘦 𝘪𝘴 𝘤𝘰𝘮𝘱𝘰𝘴𝘦𝘥 𝘰𝘧 𝘲𝘶𝘢𝘳𝘬𝘴 𝘢𝘯𝘥 𝘨𝘭𝘶𝘰𝘯𝘴, 𝘸𝘩𝘪𝘤𝘩 𝘢𝘳𝘦 𝘵𝘩𝘦 𝘦𝘭𝘦𝘮𝘦𝘯𝘵𝘢𝘳𝘺 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴 𝘵𝘩𝘢𝘵 𝘮𝘢𝘬𝘦 𝘶𝘱 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴 𝘢𝘯𝘥 𝘱𝘳𝘰𝘵𝘰𝘯𝘴. 𝘜𝘯𝘥𝘦𝘳 𝘯𝘰𝘳𝘮𝘢𝘭 𝘤𝘰𝘯𝘥𝘪𝘵𝘪𝘰𝘯𝘴, 𝘲𝘶𝘢𝘳𝘬𝘴 𝘢𝘳𝘦 𝘤𝘰𝘯𝘧𝘪𝘯𝘦𝘥 𝘸𝘪𝘵𝘩𝘪𝘯 𝘵𝘩𝘦𝘴𝘦 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴, 𝘣𝘶𝘵 𝘵𝘩𝘦 𝘦𝘹𝘵𝘳𝘦𝘮𝘦 𝘤𝘰𝘯𝘥𝘪𝘵𝘪𝘰𝘯𝘴 𝘢𝘵 𝘵𝘩𝘦 𝘩𝘦𝘢𝘳𝘵 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘮𝘢𝘺 𝘣𝘦 𝘴𝘶𝘧𝘧𝘪𝘤𝘪𝘦𝘯𝘵 𝘵𝘰 𝘭𝘪𝘣𝘦𝘳𝘢𝘵𝘦 𝘵𝘩𝘦𝘮, 𝘧𝘰𝘳𝘮𝘪𝘯𝘨 𝘢 𝘱𝘭𝘢𝘴𝘮𝘢 𝘸𝘩𝘦𝘳𝘦 𝘲𝘶𝘢𝘳𝘬𝘴 𝘢𝘯𝘥 𝘨𝘭𝘶𝘰𝘯𝘴 𝘤𝘢𝘯 𝘪𝘯𝘵𝘦𝘳𝘢𝘤𝘵 𝘮𝘰𝘳𝘦 𝘧𝘳𝘦𝘦𝘭𝘺. 𝘛𝘩𝘦 𝘴𝘵𝘶𝘥𝘺 𝘰𝘧 𝘵𝘩𝘪𝘴 𝘱𝘰𝘵𝘦𝘯𝘵𝘪𝘢𝘭 𝘴𝘵𝘢𝘵𝘦 𝘰𝘧 𝘮𝘢𝘵𝘵𝘦𝘳 𝘪𝘴 𝘯𝘰𝘵 𝘰𝘯𝘭𝘺 𝘧𝘢𝘴𝘤𝘪𝘯𝘢𝘵𝘪𝘯𝘨 𝘧𝘰𝘳 𝘶𝘯𝘥𝘦𝘳𝘴𝘵𝘢𝘯𝘥𝘪𝘯𝘨 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘣𝘶𝘵 𝘢𝘭𝘴𝘰 𝘱𝘳𝘰𝘷𝘪𝘥𝘦𝘴 𝘪𝘯𝘴𝘪𝘨𝘩𝘵𝘴 𝘪𝘯𝘵𝘰 𝘵𝘩𝘦 𝘦𝘢𝘳𝘭𝘺 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘦, 𝘫𝘶𝘴𝘵 𝘮𝘰𝘮𝘦𝘯𝘵𝘴 𝘢𝘧𝘵𝘦𝘳 𝘵𝘩𝘦 𝘉𝘪𝘨 𝘉𝘢𝘯𝘨 𝘸𝘩𝘦𝘯 𝘲𝘶𝘢𝘳𝘬-𝘨𝘭𝘶𝘰𝘯 𝘱𝘭𝘢𝘴𝘮𝘢 𝘸𝘰𝘶𝘭𝘥 𝘩𝘢𝘷𝘦 𝘣𝘦𝘦𝘯 𝘱𝘳𝘦𝘷𝘢𝘭𝘦𝘯𝘵.

𝘕𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘢𝘳𝘦 𝘪𝘯 𝘴𝘶𝘮𝘮𝘢𝘳𝘺 𝘤𝘰𝘮𝘱𝘰𝘴𝘦𝘥 𝘰𝘧 "𝘯𝘦𝘶𝘵𝘳𝘢𝘭𝘭𝘺 𝘤𝘩𝘢𝘳𝘨𝘦𝘥 𝘣𝘶𝘪𝘭𝘥𝘪𝘯𝘨 𝘣𝘭𝘰𝘤𝘬𝘴" 𝘸𝘩𝘪𝘤𝘩 𝘢𝘳𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴. 𝘛𝘩𝘦𝘴𝘦 𝘢𝘳𝘦 𝘵𝘩𝘦 𝘰𝘶𝘵𝘤𝘰𝘮𝘦 𝘰𝘧 𝘵𝘩𝘦 𝘧𝘶𝘴𝘪𝘰𝘯 𝘰𝘧 𝘱𝘳𝘰𝘵𝘰𝘯𝘴 𝘢𝘯𝘥 𝘦𝘭𝘦𝘤𝘵𝘳𝘰𝘯𝘴 𝘶𝘯𝘥𝘦𝘳 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳’𝘴 𝘪𝘮𝘮𝘦𝘯𝘴𝘦 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘱𝘳𝘦𝘴𝘴𝘶𝘳𝘦. 𝘛𝘩𝘦𝘴𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴 𝘨𝘪𝘷𝘦 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳 𝘴𝘰𝘮𝘦 𝘰𝘧 𝘪𝘵𝘴 𝘮𝘰𝘴𝘵 𝘯𝘰𝘵𝘢𝘣𝘭𝘦 𝘱𝘳𝘰𝘱𝘦𝘳𝘵𝘪𝘦𝘴, 𝘪𝘯𝘤𝘭𝘶𝘥𝘪𝘯𝘨 𝘵𝘩𝘦 𝘦𝘹𝘪𝘴𝘵𝘦𝘯𝘤𝘦 𝘰𝘧 𝘢 𝘴𝘶𝘱𝘦𝘳𝘧𝘭𝘶𝘪𝘥 𝘤𝘰𝘳𝘦 𝘢𝘯𝘥 𝘵𝘩𝘦 𝘱𝘰𝘵𝘦𝘯𝘵𝘪𝘢𝘭 𝘧𝘰𝘳 𝘲𝘶𝘢𝘳𝘬-𝘨𝘭𝘶𝘰𝘯 𝘱𝘭𝘢𝘴𝘮𝘢 𝘢𝘵 𝘪𝘵𝘴 𝘤𝘦𝘯𝘵𝘦𝘳.

𝐓𝐇𝐄 𝐌𝐀𝐆𝐍𝐄𝐓𝐈𝐒𝐌 𝐎𝐅 𝐍𝐄𝐔𝐓𝐑𝐎𝐍 𝐒𝐓𝐀𝐑𝐒
𝘖𝘯𝘦 𝘰𝘧 𝘵𝘩𝘦 𝘮𝘰𝘴𝘵 𝘧𝘢𝘴𝘤𝘪𝘯𝘢𝘵𝘪𝘯𝘨 𝘢𝘴𝘱𝘦𝘤𝘵𝘴 𝘰𝘧 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘪𝘴 𝘵𝘩𝘦𝘪𝘳 𝘪𝘯𝘤𝘳𝘦𝘥𝘪𝘣𝘭𝘺 𝘪𝘯𝘵𝘦𝘯𝘴𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴, 𝘸𝘩𝘪𝘤𝘩 𝘳𝘢𝘯𝘬 𝘢𝘮𝘰𝘯𝘨 𝘵𝘩𝘦𝘪𝘳 𝘮𝘰𝘴𝘵 𝘦𝘹𝘵𝘳𝘦𝘮𝘦 𝘱𝘳𝘰𝘱𝘦𝘳𝘵𝘪𝘦𝘴. 𝘛𝘩𝘪𝘴 𝘪𝘯𝘵𝘦𝘯𝘴𝘪𝘵𝘺 𝘪𝘴 𝘵𝘩𝘦 𝘳𝘦𝘴𝘶𝘭𝘵 𝘰𝘧 𝘢 𝘱𝘳𝘰𝘤𝘦𝘴𝘴 𝘬𝘯𝘰𝘸𝘯 𝘢𝘴 '𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘭𝘶𝘹 𝘤𝘰𝘯𝘴𝘦𝘳𝘷𝘢𝘵𝘪𝘰𝘯,' 𝘸𝘩𝘪𝘤𝘩 𝘵𝘢𝘬𝘦𝘴 𝘱𝘭𝘢𝘤𝘦 𝘥𝘶𝘳𝘪𝘯𝘨 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳'𝘴 𝘥𝘦𝘢𝘵𝘩 𝘵𝘩𝘳𝘰𝘦𝘴. 
𝘈𝘴 𝘵𝘩𝘦 𝘱𝘳𝘰𝘨𝘦𝘯𝘪𝘵𝘰𝘳 𝘴𝘵𝘢𝘳—𝘰𝘧𝘵𝘦𝘯 𝘢 𝘮𝘢𝘴𝘴𝘪𝘷𝘦 𝘴𝘵𝘢𝘳 𝘢𝘵 𝘵𝘩𝘦 𝘦𝘯𝘥 𝘰𝘧 𝘪𝘵𝘴 𝘭𝘪𝘧𝘦 𝘤𝘺𝘤𝘭𝘦—𝘶𝘯𝘥𝘦𝘳𝘨𝘰𝘦𝘴 𝘢 𝘤𝘢𝘵𝘢𝘴𝘵𝘳𝘰𝘱𝘩𝘪𝘤 𝘤𝘰𝘭𝘭𝘢𝘱𝘴𝘦, 𝘪𝘵𝘴 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘭𝘶𝘹 𝘢𝘯𝘥 𝘢𝘯𝘨𝘶𝘭𝘢𝘳 𝘮𝘰𝘮𝘦𝘯𝘵𝘶𝘮 𝘢𝘳𝘦 𝘤𝘰𝘯𝘴𝘦𝘳𝘷𝘦𝘥 𝘪𝘯 𝘢 𝘮𝘶𝘤𝘩 𝘴𝘮𝘢𝘭𝘭𝘦𝘳 𝘷𝘰𝘭𝘶𝘮𝘦, 𝘭𝘦𝘢𝘥𝘪𝘯𝘨 𝘵𝘰 𝘢 𝘥𝘳𝘢𝘮𝘢𝘵𝘪𝘤 𝘢𝘮𝘱𝘭𝘪𝘧𝘪𝘤𝘢𝘵𝘪𝘰𝘯 𝘰𝘧 𝘪𝘵𝘴 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥.

𝘛𝘩𝘪𝘴 𝘤𝘰𝘯𝘴𝘦𝘳𝘷𝘢𝘵𝘪𝘰𝘯 𝘰𝘧 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘭𝘶𝘹 𝘩𝘢𝘱𝘱𝘦𝘯𝘴 𝘣𝘦𝘤𝘢𝘶𝘴𝘦 𝘵𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥 𝘭𝘪𝘯𝘦𝘴, 𝘮𝘶𝘤𝘩 𝘭𝘪𝘬𝘦 𝘴𝘵𝘳𝘦𝘵𝘤𝘩𝘦𝘥 𝘦𝘭𝘢𝘴𝘵𝘪𝘤 𝘣𝘢𝘯𝘥𝘴, 𝘴𝘵𝘳𝘪𝘷𝘦 𝘵𝘰 𝘳𝘦𝘴𝘪𝘴𝘵 𝘣𝘦𝘪𝘯𝘨 𝘤𝘰𝘮𝘱𝘳𝘦𝘴𝘴𝘦𝘥 𝘢𝘯𝘥 𝘮𝘢𝘪𝘯𝘵𝘢𝘪𝘯 𝘵𝘩𝘦𝘪𝘳 𝘰𝘳𝘪𝘨𝘪𝘯𝘢𝘭 𝘤𝘰𝘯𝘧𝘪𝘨𝘶𝘳𝘢𝘵𝘪𝘰𝘯. 𝘈𝘴 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳’𝘴 𝘤𝘰𝘳𝘦 𝘤𝘰𝘯𝘵𝘳𝘢𝘤𝘵𝘴, 𝘵𝘩𝘦𝘴𝘦 𝘭𝘪𝘯𝘦𝘴 𝘢𝘳𝘦 𝘧𝘰𝘳𝘤𝘦𝘥 𝘪𝘯𝘵𝘰 𝘢 𝘮𝘶𝘤𝘩 𝘵𝘪𝘯𝘪𝘦𝘳 𝘳𝘦𝘨𝘪𝘰𝘯, 𝘤𝘢𝘶𝘴𝘪𝘯𝘨 𝘵𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥 𝘴𝘵𝘳𝘦𝘯𝘨𝘵𝘩 𝘵𝘰 𝘴𝘶𝘳𝘨𝘦 𝘣𝘺 𝘴𝘦𝘷𝘦𝘳𝘢𝘭 𝘰𝘳𝘥𝘦𝘳𝘴 𝘰𝘧 𝘮𝘢𝘨𝘯𝘪𝘵𝘶𝘥𝘦.

𝘈 𝘵𝘺𝘱𝘪𝘤𝘢𝘭 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘢𝘭𝘳𝘦𝘢𝘥𝘺 𝘮𝘢𝘯𝘪𝘧𝘦𝘴𝘵𝘴 𝘢 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥 𝘵𝘩𝘢𝘵 𝘪𝘴 𝘣𝘪𝘭𝘭𝘪𝘰𝘯𝘴 𝘰𝘧 𝘵𝘪𝘮𝘦𝘴 𝘮𝘰𝘳𝘦 𝘱𝘰𝘸𝘦𝘳𝘧𝘶𝘭 𝘵𝘩𝘢𝘯 𝘵𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥 𝘧𝘰𝘶𝘯𝘥 𝘰𝘯 𝘌𝘢𝘳𝘵𝘩; 𝘵𝘩𝘪𝘴 𝘪𝘴 𝘵𝘩𝘦 𝘬𝘪𝘯𝘥 𝘰𝘧 𝘦𝘹𝘵𝘳𝘢𝘰𝘳𝘥𝘪𝘯𝘢𝘳𝘺 𝘱𝘰𝘸𝘦𝘳 𝘵𝘩𝘢𝘵 𝘤𝘢𝘯 𝘢𝘧𝘧𝘦𝘤𝘵 𝘮𝘢𝘵𝘵𝘦𝘳 𝘪𝘯 𝘸𝘢𝘺𝘴 𝘵𝘩𝘢𝘵 𝘢𝘳𝘦 𝘳𝘢𝘥𝘪𝘤𝘢𝘭𝘭𝘺 𝘥𝘪𝘧𝘧𝘦𝘳𝘦𝘯𝘵 𝘧𝘳𝘰𝘮 𝘰𝘶𝘳 𝘦𝘷𝘦𝘳𝘺𝘥𝘢𝘺 𝘦𝘹𝘱𝘦𝘳𝘪𝘦𝘯𝘤𝘦𝘴. 
𝘖𝘯 𝘌𝘢𝘳𝘵𝘩, 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴 𝘢𝘳𝘦 𝘶𝘴𝘶𝘢𝘭𝘭𝘺 𝘣𝘦𝘯𝘪𝘨𝘯, 𝘪𝘯𝘧𝘭𝘶𝘦𝘯𝘤𝘪𝘯𝘨 𝘤𝘰𝘮𝘱𝘢𝘴𝘴 𝘯𝘦𝘦𝘥𝘭𝘦𝘴 𝘢𝘯𝘥 𝘢𝘭𝘭𝘰𝘸𝘪𝘯𝘨 𝘶𝘴 𝘵𝘰 𝘴𝘵𝘰𝘳𝘦 𝘥𝘢𝘵𝘢 𝘰𝘯 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘮𝘦𝘥𝘪𝘢. 𝘐𝘯 𝘵𝘩𝘦 𝘦𝘯𝘷𝘪𝘳𝘰𝘯𝘴 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳, 𝘵𝘩𝘦𝘴𝘦 𝘴𝘢𝘮𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘰𝘳𝘤𝘦𝘴 𝘢𝘳𝘦 𝘴𝘰 𝘴𝘵𝘳𝘰𝘯𝘨 𝘵𝘩𝘢𝘵 𝘵𝘩𝘦𝘺 𝘨𝘰𝘷𝘦𝘳𝘯 𝘵𝘩𝘦 𝘣𝘦𝘩𝘢𝘷𝘪𝘰𝘶𝘳 𝘰𝘧 𝘮𝘢𝘵𝘵𝘦𝘳, 𝘥𝘪𝘤𝘵𝘢𝘵𝘪𝘯𝘨 𝘩𝘰𝘸 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴 𝘮𝘰𝘷𝘦 𝘢𝘯𝘥 𝘪𝘯𝘵𝘦𝘳𝘢𝘤𝘵.

𝘞𝘪𝘵𝘩𝘪𝘯 𝘵𝘩𝘦 𝘥𝘪𝘷𝘦𝘳𝘴𝘦 𝘧𝘢𝘮𝘪𝘭𝘺 𝘰𝘧 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴, 𝘵𝘩𝘦𝘳𝘦 𝘦𝘹𝘪𝘴𝘵𝘴 𝘢𝘯 𝘦𝘷𝘦𝘯 𝘮𝘰𝘳𝘦 𝘦𝘹𝘤𝘦𝘱𝘵𝘪𝘰𝘯𝘢𝘭 𝘴𝘶𝘣𝘨𝘳𝘰𝘶𝘱 𝘬𝘯𝘰𝘸𝘯 𝘢𝘴 𝘮𝘢𝘨𝘯𝘦𝘵𝘢𝘳𝘴. 𝘛𝘩𝘦𝘴𝘦 𝘣𝘰𝘥𝘪𝘦𝘴 𝘱𝘰𝘴𝘴𝘦𝘴𝘴 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴 𝘵𝘩𝘢𝘵 𝘢𝘳𝘦 𝘪𝘯𝘤𝘰𝘮𝘱𝘳𝘦𝘩𝘦𝘯𝘴𝘪𝘣𝘭𝘺 𝘱𝘰𝘵𝘦𝘯𝘵, 𝘰𝘧𝘵𝘦𝘯 𝘦𝘹𝘤𝘦𝘦𝘥𝘪𝘯𝘨 𝘢 𝘵𝘳𝘪𝘭𝘭𝘪𝘰𝘯 𝘨𝘢𝘶𝘴𝘴 (10^12 𝘎). 𝘛𝘰 𝘱𝘶𝘵 𝘵𝘩𝘢𝘵 𝘧𝘪𝘨𝘶𝘳𝘦 𝘪𝘯 𝘱𝘦𝘳𝘴𝘱𝘦𝘤𝘵𝘪𝘷𝘦, 𝘪𝘵'𝘴 𝘢𝘣𝘰𝘶𝘵 𝘢 𝘩𝘶𝘯𝘥𝘳𝘦𝘥 𝘮𝘪𝘭𝘭𝘪𝘰𝘯 𝘵𝘪𝘮𝘦𝘴 𝘴𝘵𝘳𝘰𝘯𝘨𝘦𝘳 𝘵𝘩𝘢𝘯 𝘵𝘩𝘦 𝘮𝘰𝘴𝘵 𝘱𝘰𝘸𝘦𝘳𝘧𝘶𝘭 𝘮𝘢𝘯-𝘮𝘢𝘥𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘴 𝘢𝘯𝘥 𝘢 𝘲𝘶𝘪𝘯𝘵𝘪𝘭𝘭𝘪𝘰𝘯 (10^18) 𝘵𝘪𝘮𝘦𝘴 𝘵𝘩𝘢𝘵 𝘰𝘧 𝘢 𝘳𝘦𝘧𝘳𝘪𝘨𝘦𝘳𝘢𝘵𝘰𝘳 𝘮𝘢𝘨𝘯𝘦𝘵.

𝘛𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴 𝘰𝘧 𝘮𝘢𝘨𝘯𝘦𝘵𝘢𝘳𝘴 𝘥𝘰𝘯’𝘵 𝘳𝘦𝘮𝘢𝘪𝘯 𝘤𝘰𝘯𝘴𝘵𝘢𝘯𝘵; 𝘰𝘷𝘦𝘳 𝘵𝘪𝘮𝘦, 𝘵𝘩𝘦𝘺 𝘷𝘦𝘳𝘺 𝘴𝘭𝘰𝘸𝘭𝘺 𝘥𝘪𝘮𝘪𝘯𝘪𝘴𝘩 𝘪𝘯 𝘴𝘵𝘳𝘦𝘯𝘨𝘵𝘩. 𝘛𝘩𝘪𝘴 𝘱𝘳𝘰𝘤𝘦𝘴𝘴, 𝘢𝘱𝘱𝘳𝘰𝘱𝘳𝘪𝘢𝘵𝘦𝘭𝘺 𝘯𝘢𝘮𝘦𝘥 '𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥 𝘥𝘦𝘤𝘢𝘺,' 𝘪𝘴 𝘯𝘰𝘵 𝘢 𝘴𝘶𝘣𝘥𝘶𝘦𝘥 𝘢𝘧𝘧𝘢𝘪𝘳. 
𝘈𝘴 𝘵𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘦𝘯𝘦𝘳𝘨𝘺 𝘨𝘳𝘢𝘥𝘶𝘢𝘭𝘭𝘺 𝘥𝘪𝘴𝘴𝘪𝘱𝘢𝘵𝘦𝘴, 𝘪𝘵 𝘤𝘢𝘯 𝘤𝘢𝘶𝘴𝘦 𝘵𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘢𝘳'𝘴 𝘤𝘳𝘶𝘴𝘵 𝘵𝘰 𝘤𝘳𝘢𝘤𝘬 𝘢𝘯𝘥 𝘳𝘦𝘴𝘵𝘳𝘶𝘤𝘵𝘶𝘳𝘦. 𝘛𝘩𝘪𝘴 𝘳𝘦𝘢𝘳𝘳𝘢𝘯𝘨𝘦𝘮𝘦𝘯𝘵 𝘰𝘧 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳'𝘴 𝘤𝘳𝘶𝘴𝘵 𝘤𝘢𝘯 𝘴𝘰𝘮𝘦𝘵𝘪𝘮𝘦𝘴 𝘭𝘦𝘢𝘥 𝘵𝘰 𝘷𝘪𝘰𝘭𝘦𝘯𝘵 𝘰𝘶𝘵𝘣𝘶𝘳𝘴𝘵𝘴, 𝘳𝘦𝘭𝘦𝘢𝘴𝘪𝘯𝘨 𝘷𝘢𝘴𝘵 𝘲𝘶𝘢𝘯𝘵𝘪𝘵𝘪𝘦𝘴 𝘰𝘧 𝘦𝘯𝘦𝘳𝘨𝘺 𝘪𝘯𝘵𝘰 𝘴𝘱𝘢𝘤𝘦.

𝘋𝘶𝘳𝘪𝘯𝘨 𝘴𝘶𝘤𝘩 𝘰𝘶𝘵𝘣𝘶𝘳𝘴𝘵𝘴, 𝘮𝘢𝘨𝘯𝘦𝘵𝘢𝘳𝘴 𝘤𝘢𝘯 𝘦𝘮𝘪𝘵 𝘪𝘯𝘵𝘦𝘯𝘴𝘦 𝘧𝘭𝘢𝘳𝘦𝘴 𝘮𝘢𝘥𝘦 𝘶𝘱 𝘰𝘧 𝘟-𝘳𝘢𝘺𝘴 𝘢𝘯𝘥 𝘨𝘢𝘮𝘮𝘢 𝘳𝘢𝘺𝘴, 𝘢𝘯𝘥 𝘵𝘩𝘦𝘴𝘦 𝘦𝘮𝘪𝘴𝘴𝘪𝘰𝘯𝘴 𝘢𝘳𝘦 𝘥𝘦𝘵𝘦𝘤𝘵𝘢𝘣𝘭𝘦 𝘢𝘤𝘳𝘰𝘴𝘴 𝘷𝘢𝘴𝘵 𝘪𝘯𝘵𝘦𝘳𝘴𝘵𝘦𝘭𝘭𝘢𝘳 𝘥𝘪𝘴𝘵𝘢𝘯𝘤𝘦𝘴 𝘣𝘺 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘵𝘰𝘳𝘪𝘦𝘴 𝘦𝘲𝘶𝘪𝘱𝘱𝘦𝘥 𝘸𝘪𝘵𝘩 𝘴𝘱𝘢𝘤𝘦-𝘣𝘢𝘴𝘦𝘥 𝘵𝘦𝘭𝘦𝘴𝘤𝘰𝘱𝘦𝘴. 𝘚𝘶𝘤𝘩 𝘣𝘶𝘳𝘴𝘵𝘴 𝘳𝘦𝘱𝘳𝘦𝘴𝘦𝘯𝘵 𝘴𝘰𝘮𝘦 𝘰𝘧 𝘵𝘩𝘦 𝘮𝘰𝘴𝘵 𝘱𝘰𝘸𝘦𝘳𝘧𝘶𝘭 𝘦𝘭𝘦𝘤𝘵𝘳𝘰𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘦𝘷𝘦𝘯𝘵𝘴 𝘬𝘯𝘰𝘸𝘯 𝘪𝘯 𝘵𝘩𝘦 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘦. 𝘛𝘩𝘦𝘺 𝘱𝘳𝘰𝘷𝘪𝘥𝘦 𝘢𝘴𝘵𝘳𝘰𝘱𝘩𝘺𝘴𝘪𝘤𝘪𝘴𝘵𝘴 𝘸𝘪𝘵𝘩 𝘨𝘭𝘪𝘮𝘱𝘴𝘦𝘴 𝘪𝘯𝘵𝘰 𝘵𝘩𝘦 𝘤𝘰𝘮𝘱𝘭𝘦𝘹 𝘱𝘩𝘺𝘴𝘪𝘤𝘴 𝘨𝘰𝘷𝘦𝘳𝘯𝘪𝘯𝘨 𝘵𝘩𝘦 𝘣𝘦𝘩𝘢𝘷𝘪𝘰𝘶𝘳 𝘰𝘧 𝘮𝘢𝘵𝘵𝘦𝘳 𝘶𝘯𝘥𝘦𝘳 𝘦𝘹𝘵𝘳𝘦𝘮𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴, 𝘸𝘩𝘪𝘤𝘩 𝘢𝘳𝘦 𝘪𝘮𝘱𝘰𝘴𝘴𝘪𝘣𝘭𝘦 𝘵𝘰 𝘳𝘦𝘱𝘭𝘪𝘤𝘢𝘵𝘦 𝘪𝘯 𝘢𝘯𝘺 𝘦𝘢𝘳𝘵𝘩𝘭𝘺 𝘭𝘢𝘣𝘰𝘳𝘢𝘵𝘰𝘳𝘺.

𝘔𝘢𝘨𝘯𝘦𝘵𝘢𝘳𝘴, 𝘢𝘯𝘥 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘪𝘯 𝘨𝘦𝘯𝘦𝘳𝘢𝘭, 𝘴𝘦𝘳𝘷𝘦 𝘢𝘴 𝘯𝘢𝘵𝘶𝘳𝘢𝘭 𝘭𝘢𝘣𝘰𝘳𝘢𝘵𝘰𝘳𝘪𝘦𝘴 𝘧𝘰𝘳 𝘴𝘵𝘶𝘥𝘺𝘪𝘯𝘨 𝘱𝘩𝘺𝘴𝘪𝘤𝘴 𝘶𝘯𝘥𝘦𝘳 𝘦𝘹𝘵𝘳𝘦𝘮𝘦 𝘤𝘰𝘯𝘥𝘪𝘵𝘪𝘰𝘯𝘴 𝘢𝘯𝘥 𝘤𝘰𝘯𝘵𝘪𝘯𝘶𝘦 𝘵𝘰 𝘧𝘢𝘴𝘤𝘪𝘯𝘢𝘵𝘦 𝘴𝘤𝘪𝘦𝘯𝘵𝘪𝘴𝘵𝘴 𝘢𝘵𝘵𝘦𝘮𝘱𝘵𝘪𝘯𝘨 𝘵𝘰 𝘶𝘯𝘥𝘦𝘳𝘴𝘵𝘢𝘯𝘥 𝘵𝘩𝘦𝘴𝘦 𝘤𝘦𝘭𝘦𝘴𝘵𝘪𝘢𝘭 𝘱𝘩𝘦𝘯𝘰𝘮𝘦𝘯𝘢. 𝘛𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘰𝘳𝘤𝘦 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘯𝘰𝘵 𝘫𝘶𝘴𝘵 𝘢 𝘱𝘩𝘦𝘯𝘰𝘮𝘦𝘯𝘰𝘯 𝘰𝘧 𝘵𝘩𝘦 𝘤𝘰𝘴𝘮𝘰𝘴; 𝘪𝘵’𝘴 𝘢 𝘬𝘦𝘺 𝘵𝘰 𝘶𝘯𝘳𝘢𝘷𝘦𝘭𝘪𝘯𝘨 𝘵𝘩𝘦 𝘦𝘯𝘪𝘨𝘮𝘢𝘴 𝘰𝘧 𝘵𝘩𝘦 𝘷𝘦𝘳𝘺 𝘧𝘢𝘣𝘳𝘪𝘤 𝘰𝘧 𝘵𝘩𝘦 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘦.

𝐍𝐄𝐔𝐓𝐑𝐎𝐍 𝐒𝐓𝐀𝐑
𝘈 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘵𝘩𝘦 𝘤𝘰𝘭𝘭𝘢𝘱𝘴𝘦𝘥 𝘤𝘰𝘳𝘦 𝘰𝘧 𝘢 𝘮𝘢𝘴𝘴𝘪𝘷𝘦 𝘴𝘵𝘢𝘳 𝘸𝘩𝘪𝘤𝘩 𝘩𝘢𝘥 𝘢𝘯 𝘪𝘯𝘪𝘵𝘪𝘢𝘭 𝘮𝘢𝘴𝘴 𝘣𝘦𝘵𝘸𝘦𝘦𝘯 𝘢𝘣𝘰𝘶𝘵 8 𝘢𝘯𝘥 30 𝘴𝘰𝘭𝘢𝘳 𝘮𝘢𝘴𝘴𝘦𝘴. 𝘞𝘩𝘦𝘯 𝘴𝘶𝘤𝘩 𝘢 𝘴𝘵𝘢𝘳 𝘦𝘹𝘩𝘢𝘶𝘴𝘵𝘴 𝘪𝘵𝘴 𝘯𝘶𝘤𝘭𝘦𝘢𝘳 𝘧𝘶𝘦𝘭, 𝘪𝘵 𝘶𝘯𝘥𝘦𝘳𝘨𝘰𝘦𝘴 𝘢 𝘴𝘶𝘱𝘦𝘳𝘯𝘰𝘷𝘢 𝘦𝘹𝘱𝘭𝘰𝘴𝘪𝘰𝘯 𝘸𝘩𝘪𝘤𝘩 𝘣𝘭𝘰𝘸𝘴 𝘰𝘧𝘧 𝘪𝘵𝘴 𝘰𝘶𝘵𝘦𝘳 𝘭𝘢𝘺𝘦𝘳𝘴, 𝘭𝘦𝘢𝘷𝘪𝘯𝘨 𝘵𝘩𝘦 𝘦𝘹𝘵𝘳𝘦𝘮𝘦𝘭𝘺 𝘥𝘦𝘯𝘴𝘦 𝘤𝘰𝘳𝘦 𝘣𝘦𝘩𝘪𝘯𝘥.

𝘕𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘢𝘳𝘦 𝘪𝘯𝘤𝘳𝘦𝘥𝘪𝘣𝘭𝘺 𝘥𝘦𝘯𝘴𝘦 – 𝘵𝘩𝘦𝘺 𝘵𝘺𝘱𝘪𝘤𝘢𝘭𝘭𝘺 𝘩𝘢𝘷𝘦 𝘢 𝘮𝘢𝘴𝘴 𝘶𝘱 𝘵𝘰 𝘵𝘸𝘪𝘤𝘦 𝘵𝘩𝘢𝘵 𝘰𝘧 𝘵𝘩𝘦 𝘚𝘶𝘯, 𝘺𝘦𝘵 𝘵𝘩𝘦𝘪𝘳 𝘳𝘢𝘥𝘪𝘶𝘴 𝘪𝘴 𝘰𝘯𝘭𝘺 𝘢𝘣𝘰𝘶𝘵 10 𝘬𝘪𝘭𝘰𝘮𝘦𝘵𝘦𝘳𝘴. 𝘛𝘩𝘪𝘴 𝘮𝘦𝘢𝘯𝘴 𝘵𝘩𝘦 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭 𝘪𝘴 𝘴𝘰 𝘥𝘦𝘯𝘴𝘦 𝘵𝘩𝘢𝘵 𝘢 𝘴𝘶𝘨𝘢𝘳-𝘤𝘶𝘣𝘦-𝘴𝘪𝘻𝘦𝘥 𝘢𝘮𝘰𝘶𝘯𝘵 𝘰𝘧 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘮𝘢𝘵𝘦𝘳𝘪𝘢𝘭 𝘸𝘰𝘶𝘭𝘥 𝘩𝘢𝘷𝘦 𝘢 𝘮𝘢𝘴𝘴 𝘰𝘧 𝘢𝘣𝘰𝘶𝘵 𝘢 𝘣𝘪𝘭𝘭𝘪𝘰𝘯 𝘵𝘰𝘯𝘴. 
𝘕𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘢𝘳𝘦 𝘤𝘰𝘮𝘱𝘰𝘴𝘦𝘥 𝘮𝘰𝘴𝘵𝘭𝘺 𝘰𝘧 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴, 𝘴𝘶𝘣𝘢𝘵𝘰𝘮𝘪𝘤 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴 𝘸𝘪𝘵𝘩 𝘯𝘰 𝘦𝘭𝘦𝘤𝘵𝘳𝘪𝘤 𝘤𝘩𝘢𝘳𝘨𝘦, 𝘸𝘩𝘪𝘤𝘩 𝘪𝘴 𝘸𝘩𝘺 𝘵𝘩𝘦𝘺'𝘳𝘦 𝘤𝘢𝘭𝘭𝘦𝘥 "𝘯𝘦𝘶𝘵𝘳𝘰𝘯" 𝘴𝘵𝘢𝘳𝘴. 𝘛𝘩𝘦𝘺 𝘢𝘳𝘦 𝘩𝘦𝘭𝘥 𝘵𝘰𝘨𝘦𝘵𝘩𝘦𝘳 𝘣𝘺 𝘨𝘳𝘢𝘷𝘪𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘧𝘰𝘳𝘤𝘦𝘴 𝘵𝘩𝘢𝘵 𝘢𝘳𝘦 𝘴𝘵𝘳𝘰𝘯𝘨 𝘦𝘯𝘰𝘶𝘨𝘩 𝘵𝘰 𝘰𝘷𝘦𝘳𝘤𝘰𝘮𝘦 𝘵𝘩𝘦 𝘥𝘦𝘨𝘦𝘯𝘦𝘳𝘢𝘤𝘺 𝘱𝘳𝘦𝘴𝘴𝘶𝘳𝘦 𝘰𝘧 𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴 (𝘢 𝘲𝘶𝘢𝘯𝘵𝘶𝘮 𝘮𝘦𝘤𝘩𝘢𝘯𝘪𝘤𝘢𝘭 𝘱𝘩𝘦𝘯𝘰𝘮𝘦𝘯𝘰𝘯), 𝘭𝘦𝘢𝘥𝘪𝘯𝘨 𝘵𝘰 𝘢𝘯 𝘪𝘯𝘤𝘳𝘦𝘥𝘪𝘣𝘭𝘺 𝘥𝘦𝘯𝘴𝘦 𝘢𝘯𝘥 𝘤𝘰𝘮𝘱𝘢𝘤𝘵 𝘰𝘣𝘫𝘦𝘤𝘵.

𝐏𝐔𝐋𝐒𝐀𝐑
𝘈 𝘱𝘶𝘭𝘴𝘢𝘳 𝘪𝘴 𝘢 𝘵𝘺𝘱𝘦 𝘰𝘧 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘵𝘩𝘢𝘵 𝘦𝘮𝘪𝘵𝘴 𝘣𝘦𝘢𝘮𝘴 𝘰𝘧 𝘦𝘭𝘦𝘤𝘵𝘳𝘰𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘳𝘢𝘥𝘪𝘢𝘵𝘪𝘰𝘯 𝘧𝘳𝘰𝘮 𝘪𝘵𝘴 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘱𝘰𝘭𝘦𝘴. 𝘈𝘴 𝘵𝘩𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘳𝘰𝘵𝘢𝘵𝘦𝘴, 𝘵𝘩𝘦𝘴𝘦 𝘣𝘦𝘢𝘮𝘴 𝘴𝘸𝘦𝘦𝘱 𝘢𝘤𝘳𝘰𝘴𝘴 𝘴𝘱𝘢𝘤𝘦, 𝘢𝘯𝘥 𝘪𝘧 𝘌𝘢𝘳𝘵𝘩 𝘪𝘴 𝘪𝘯 𝘵𝘩𝘦 𝘱𝘢𝘵𝘩 𝘰𝘧 𝘵𝘩𝘦𝘴𝘦 𝘣𝘦𝘢𝘮𝘴, 𝘸𝘦 𝘥𝘦𝘵𝘦𝘤𝘵 𝘢 𝘱𝘶𝘭𝘴𝘦 𝘰𝘧 𝘳𝘢𝘥𝘪𝘢𝘵𝘪𝘰𝘯 𝘵𝘩𝘢𝘵 𝘢𝘱𝘱𝘦𝘢𝘳𝘴 𝘵𝘰 "𝘱𝘶𝘭𝘴𝘦" 𝘰𝘯 𝘢𝘯𝘥 𝘰𝘧𝘧 𝘢𝘴 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳 𝘴𝘱𝘪𝘯𝘴. 𝘛𝘩𝘪𝘴 𝘪𝘴 𝘴𝘪𝘮𝘪𝘭𝘢𝘳 𝘵𝘰 𝘵𝘩𝘦 𝘦𝘮𝘪𝘴𝘴𝘪𝘰𝘯𝘴 𝘰𝘧 𝘢 𝘱𝘶𝘭𝘴𝘢𝘳, 𝘸𝘩𝘪𝘤𝘩 𝘪𝘴 𝘸𝘩𝘺 𝘱𝘶𝘭𝘴𝘢𝘳𝘴 𝘢𝘳𝘦 𝘴𝘰𝘮𝘦𝘵𝘪𝘮𝘦𝘴 𝘥𝘦𝘴𝘤𝘳𝘪𝘣𝘦𝘥 𝘢𝘴 𝘵𝘩𝘦 "𝘣𝘦𝘢𝘤𝘰𝘯𝘴" 𝘰𝘧 𝘵𝘩𝘦 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘦. 𝘛𝘩𝘦𝘺 𝘢𝘳𝘦 𝘴𝘰𝘮𝘦 𝘰𝘧 𝘵𝘩𝘦 𝘮𝘰𝘴𝘵 𝘱𝘳𝘦𝘤𝘪𝘴𝘦 𝘤𝘭𝘰𝘤𝘬𝘴 𝘪𝘯 𝘵𝘩𝘦 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘦 𝘥𝘶𝘦 𝘵𝘰 𝘵𝘩𝘦 𝘳𝘦𝘨𝘶𝘭𝘢𝘳𝘪𝘵𝘺 𝘰𝘧 𝘵𝘩𝘦𝘪𝘳 𝘱𝘶𝘭𝘴𝘦.

𝘛𝘩𝘦 𝘳𝘦𝘢𝘴𝘰𝘯 𝘱𝘶𝘭𝘴𝘢𝘳𝘴 𝘦𝘮𝘪𝘵 𝘵𝘩𝘦𝘴𝘦 𝘣𝘦𝘢𝘮𝘴 𝘪𝘴 𝘭𝘪𝘯𝘬𝘦𝘥 𝘵𝘰 𝘵𝘩𝘦𝘪𝘳 𝘴𝘵𝘳𝘰𝘯𝘨 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴 𝘢𝘯𝘥 𝘳𝘢𝘱𝘪𝘥 𝘳𝘰𝘵𝘢𝘵𝘪𝘰𝘯. 𝘛𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥 𝘢𝘤𝘤𝘦𝘭𝘦𝘳𝘢𝘵𝘦𝘴 𝘤𝘩𝘢𝘳𝘨𝘦𝘥 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴 𝘪𝘯 𝘵𝘩𝘦 𝘴𝘵𝘢𝘳'𝘴 𝘷𝘪𝘤𝘪𝘯𝘪𝘵𝘺, 𝘤𝘢𝘶𝘴𝘪𝘯𝘨 𝘵𝘩𝘦𝘮 𝘵𝘰 𝘦𝘮𝘪𝘵 𝘳𝘢𝘥𝘪𝘢𝘵𝘪𝘰𝘯 𝘵𝘩𝘢𝘵'𝘴 𝘢𝘭𝘪𝘨𝘯𝘦𝘥 𝘢𝘭𝘰𝘯𝘨 𝘵𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥 𝘭𝘪𝘯𝘦𝘴. 𝘗𝘶𝘭𝘴𝘢𝘳𝘴 𝘩𝘢𝘷𝘦 𝘪𝘯𝘤𝘳𝘦𝘥𝘪𝘣𝘭𝘺 𝘴𝘵𝘳𝘰𝘯𝘨 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴, 𝘰𝘧𝘵𝘦𝘯 𝘢 𝘵𝘳𝘪𝘭𝘭𝘪𝘰𝘯 𝘵𝘪𝘮𝘦𝘴 𝘴𝘵𝘳𝘰𝘯𝘨𝘦𝘳 𝘵𝘩𝘢𝘯 𝘌𝘢𝘳𝘵𝘩'𝘴 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥.

𝘐𝘵'𝘴 𝘪𝘮𝘱𝘰𝘳𝘵𝘢𝘯𝘵 𝘵𝘰 𝘯𝘰𝘵𝘦 𝘵𝘩𝘢𝘵 𝘯𝘰𝘵 𝘢𝘭𝘭 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘢𝘳𝘦 𝘰𝘣𝘴𝘦𝘳𝘷𝘦𝘥 𝘢𝘴 𝘱𝘶𝘭𝘴𝘢𝘳𝘴. 𝘛𝘩𝘦 𝘥𝘪𝘧𝘧𝘦𝘳𝘦𝘯𝘤𝘦 𝘪𝘴 𝘮𝘢𝘪𝘯𝘭𝘺 𝘥𝘶𝘦 𝘵𝘰 𝘵𝘩𝘦 𝘰𝘳𝘪𝘦𝘯𝘵𝘢𝘵𝘪𝘰𝘯 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳'𝘴 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘢𝘹𝘪𝘴 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘦 𝘵𝘰 𝘪𝘵𝘴 𝘳𝘰𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘢𝘹𝘪𝘴 𝘢𝘯𝘥 𝘵𝘰 𝘶𝘴 𝘢𝘴 𝘰𝘣𝘴𝘦𝘳𝘷𝘦𝘳𝘴. 𝘐𝘧 𝘵𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘢𝘹𝘪𝘴 𝘥𝘰𝘦𝘴 𝘯𝘰𝘵 𝘢𝘭𝘪𝘨𝘯 𝘸𝘪𝘵𝘩 𝘵𝘩𝘦 𝘳𝘰𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭 𝘢𝘹𝘪𝘴 𝘢𝘯𝘥 𝘪𝘧 𝘪𝘵 𝘣𝘦𝘢𝘮𝘴 𝘵𝘩𝘦 𝘳𝘢𝘥𝘪𝘢𝘵𝘪𝘰𝘯 𝘪𝘯 𝘵𝘩𝘦 𝘥𝘪𝘳𝘦𝘤𝘵𝘪𝘰𝘯 𝘰𝘧 𝘌𝘢𝘳𝘵𝘩 𝘥𝘶𝘳𝘪𝘯𝘨 𝘪𝘵𝘴 𝘳𝘰𝘵𝘢𝘵𝘪𝘰𝘯, 𝘪𝘵'𝘴 𝘥𝘦𝘵𝘦𝘤𝘵𝘢𝘣𝘭𝘦 𝘢𝘴 𝘢 𝘱𝘶𝘭𝘴𝘢𝘳. 𝘖𝘵𝘩𝘦𝘳𝘸𝘪𝘴𝘦, 𝘸𝘦 𝘴𝘪𝘮𝘱𝘭𝘺 𝘴𝘦𝘦 𝘪𝘵 𝘢𝘴 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳.

𝐖𝐇𝐀𝐓 𝐀𝐑𝐄 𝐓𝐇𝐄 𝐂𝐋𝐎𝐒𝐄𝐒𝐓 𝐍𝐄𝐔𝐓𝐑𝐎𝐍 𝐒𝐓𝐀𝐑𝐒- 𝐀𝐍𝐃 𝐏𝐔𝐋𝐒𝐀𝐑𝐒 𝐓𝐎 𝐄𝐀𝐑𝐓𝐇?
𝘛𝘩𝘦 𝘤𝘭𝘰𝘴𝘦𝘴𝘵 𝘬𝘯𝘰𝘸𝘯 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘵𝘰 𝘌𝘢𝘳𝘵𝘩 𝘪𝘴 𝘙𝘟 𝘑1856.5-3754, 𝘸𝘩𝘪𝘤𝘩 𝘪𝘴 𝘢𝘭𝘴𝘰 𝘢 𝘱𝘶𝘭𝘴𝘢𝘳. 𝘐𝘵 𝘪𝘴 𝘭𝘰𝘤𝘢𝘵𝘦𝘥 𝘢𝘣𝘰𝘶𝘵 400 𝘭𝘪𝘨𝘩𝘵-𝘺𝘦𝘢𝘳𝘴 𝘢𝘸𝘢𝘺 𝘪𝘯 𝘵𝘩𝘦 𝘤𝘰𝘯𝘴𝘵𝘦𝘭𝘭𝘢𝘵𝘪𝘰𝘯 𝘰𝘧 𝘊𝘰𝘳𝘰𝘯𝘢 𝘈𝘶𝘴𝘵𝘳𝘢𝘭𝘪𝘴.
𝘛𝘩𝘦 𝘧𝘪𝘳𝘴𝘵 𝘱𝘶𝘭𝘴𝘢𝘳, 𝘊𝘗 1919 (𝘯𝘰𝘸 𝘬𝘯𝘰𝘸𝘯 𝘢𝘴 𝘗𝘚𝘙 𝘉1919+21), 𝘸𝘢𝘴 𝘥𝘪𝘴𝘤𝘰𝘷𝘦𝘳𝘦𝘥 𝘪𝘯 1967, 𝘣𝘶𝘵 𝘪𝘵 𝘪𝘴 𝘯𝘰𝘵 𝘵𝘩𝘦 𝘤𝘭𝘰𝘴𝘦𝘴𝘵 𝘵𝘰 𝘌𝘢𝘳𝘵𝘩.
𝘈𝘯𝘰𝘵𝘩𝘦𝘳 𝘳𝘦𝘭𝘢𝘵𝘪𝘷𝘦𝘭𝘺 𝘤𝘭𝘰𝘴𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘗𝘚𝘙 𝘑0108-1431, 𝘭𝘰𝘤𝘢𝘵𝘦𝘥 𝘢𝘱𝘱𝘳𝘰𝘹𝘪𝘮𝘢𝘵𝘦𝘭𝘺 424 𝘭𝘪𝘨𝘩𝘵-𝘺𝘦𝘢𝘳𝘴 𝘢𝘸𝘢𝘺.

𝐂𝐎𝐍𝐂𝐋𝐔𝐒𝐈𝐎𝐍
𝘛𝘩𝘦 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘦 𝘪𝘴 𝘢 𝘥𝘪𝘴𝘱𝘭𝘢𝘺 𝘰𝘧 𝘤𝘰𝘴𝘮𝘪𝘤 𝘸𝘰𝘯𝘥𝘦𝘳𝘴, 𝘢𝘯𝘥 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘢𝘳𝘦 𝘢𝘮𝘰𝘯𝘨 𝘪𝘵𝘴 𝘮𝘰𝘴𝘵 𝘧𝘢𝘴𝘤𝘪𝘯𝘢𝘵𝘪𝘯𝘨 𝘦𝘹𝘩𝘪𝘣𝘪𝘵𝘴. 𝘉𝘰𝘳𝘯 𝘧𝘳𝘰𝘮 𝘵𝘩𝘦 𝘤𝘰𝘯𝘷𝘶𝘭𝘴𝘪𝘷𝘦 𝘦𝘱𝘪𝘴𝘰𝘥𝘦𝘴 𝘰𝘧 𝘴𝘶𝘱𝘦𝘳𝘯𝘰𝘷𝘢𝘦, 𝘵𝘩𝘦𝘺 𝘥𝘦𝘮𝘰𝘯𝘴𝘵𝘳𝘢𝘵𝘦 𝘦𝘹𝘵𝘳𝘦𝘮𝘦𝘴 𝘰𝘧 𝘥𝘦𝘯𝘴𝘪𝘵𝘺, 𝘨𝘳𝘢𝘷𝘪𝘵𝘺, 𝘢𝘯𝘥 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘴𝘮 𝘧𝘢𝘳 𝘣𝘦𝘺𝘰𝘯𝘥 𝘢𝘯𝘺𝘵𝘩𝘪𝘯𝘨 𝘰𝘯 𝘌𝘢𝘳𝘵𝘩. 𝘛𝘩𝘦𝘴𝘦 𝘳𝘦𝘭𝘪𝘤𝘴 𝘰𝘧 𝘴𝘵𝘦𝘭𝘭𝘢𝘳 𝘨𝘪𝘢𝘯𝘵𝘴 𝘩𝘦𝘭𝘱 𝘱𝘩𝘺𝘴𝘪𝘤𝘪𝘴𝘵𝘴 𝘴𝘵𝘶𝘥𝘺 𝘮𝘢𝘵𝘵𝘦𝘳 𝘶𝘯𝘥𝘦𝘳 𝘤𝘰𝘯𝘥𝘪𝘵𝘪𝘰𝘯𝘴 𝘶𝘯𝘳𝘦𝘱𝘭𝘪𝘤𝘢𝘣𝘭𝘦 𝘪𝘯 𝘢𝘯𝘺 𝘭𝘢𝘣𝘰𝘳𝘢𝘵𝘰𝘳𝘺. 𝘞𝘪𝘵𝘩 𝘦𝘢𝘤𝘩 𝘰𝘣𝘴𝘦𝘳𝘷𝘢𝘵𝘪𝘰𝘯 𝘢𝘯𝘥 𝘮𝘰𝘥𝘦𝘭, 𝘰𝘶𝘳 𝘶𝘯𝘥𝘦𝘳𝘴𝘵𝘢𝘯𝘥𝘪𝘯𝘨 𝘰𝘧 𝘵𝘩𝘦 𝘤𝘰𝘴𝘮𝘪𝘤 𝘧𝘢𝘣𝘳𝘪𝘤, 𝘸𝘰𝘷𝘦𝘯 𝘸𝘪𝘵𝘩 𝘵𝘩𝘳𝘦𝘢𝘥𝘴 𝘭𝘪𝘬𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴, 𝘣𝘦𝘤𝘰𝘮𝘦𝘴 𝘦𝘷𝘦𝘳 𝘮𝘰𝘳𝘦 𝘪𝘯𝘵𝘳𝘪𝘤𝘢𝘵𝘦 𝘢𝘯𝘥 𝘪𝘮𝘱𝘳𝘦𝘴𝘴𝘪𝘷𝘦.

𝘛𝘩𝘦 𝘤𝘰𝘴𝘮𝘰𝘴 𝘴𝘦𝘳𝘷𝘦𝘴 𝘢𝘴 𝘢 𝘣𝘳𝘦𝘢𝘵𝘩𝘵𝘢𝘬𝘪𝘯𝘨 𝘸𝘰𝘯𝘥𝘦𝘳 𝘰𝘧 𝘤𝘦𝘭𝘦𝘴𝘵𝘪𝘢𝘭 𝘸𝘰𝘯𝘥𝘦𝘳𝘴., 𝘢𝘯𝘥 𝘸𝘪𝘵𝘩𝘪𝘯 𝘵𝘩𝘪𝘴 𝘷𝘢𝘴𝘵 𝘦𝘹𝘱𝘢𝘯𝘴𝘦, 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘴𝘵𝘢𝘯𝘥 𝘰𝘶𝘵 𝘢𝘴 𝘱𝘢𝘳𝘵𝘪𝘤𝘶𝘭𝘢𝘳𝘭𝘺 𝘤𝘢𝘱𝘵𝘪𝘷𝘢𝘵𝘪𝘯𝘨 𝘦𝘹𝘢𝘮𝘱𝘭𝘦𝘴. 
𝘛𝘩𝘦𝘴𝘦 𝘤𝘰𝘮𝘱𝘢𝘤𝘵 𝘳𝘦𝘮𝘯𝘢𝘯𝘵𝘴, 𝘧𝘰𝘳𝘨𝘦𝘥 𝘪𝘯 𝘵𝘩𝘦 𝘧𝘪𝘦𝘳𝘺 𝘵𝘩𝘳𝘰𝘦𝘴 𝘰𝘧 𝘴𝘶𝘱𝘦𝘳𝘯𝘰𝘷𝘢 𝘦𝘹𝘱𝘭𝘰𝘴𝘪𝘰𝘯𝘴, 𝘰𝘧𝘧𝘦𝘳 𝘢 𝘨𝘭𝘪𝘮𝘱𝘴𝘦 𝘪𝘯𝘵𝘰 𝘵𝘩𝘦 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘦'𝘴 𝘮𝘰𝘴𝘵 𝘦𝘹𝘵𝘳𝘦𝘮𝘦 𝘦𝘯𝘷𝘪𝘳𝘰𝘯𝘮𝘦𝘯𝘵𝘴. 𝘛𝘩𝘦𝘺 𝘦𝘹𝘩𝘪𝘣𝘪𝘵 𝘶𝘯𝘱𝘢𝘳𝘢𝘭𝘭𝘦𝘭𝘦𝘥 𝘥𝘦𝘯𝘴𝘪𝘵𝘪𝘦𝘴, 𝘸𝘪𝘵𝘩 𝘮𝘢𝘴𝘴𝘦𝘴 𝘨𝘳𝘦𝘢𝘵𝘦𝘳 𝘵𝘩𝘢𝘯 𝘵𝘩𝘢𝘵 𝘰𝘧 𝘰𝘶𝘳 𝘚𝘶𝘯 𝘤𝘰𝘮𝘱𝘳𝘦𝘴𝘴𝘦𝘥 𝘪𝘯𝘵𝘰 𝘢 𝘴𝘱𝘩𝘦𝘳𝘦 𝘫𝘶𝘴𝘵 𝘢 𝘧𝘦𝘸 𝘬𝘪𝘭𝘰𝘮𝘦𝘵𝘦𝘳𝘴 𝘢𝘤𝘳𝘰𝘴𝘴. 𝘛𝘩𝘦 𝘨𝘳𝘢𝘷𝘪𝘵𝘺 𝘢𝘵 𝘵𝘩𝘦 𝘴𝘶𝘳𝘧𝘢𝘤𝘦 𝘰𝘧 𝘢 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳 𝘪𝘴 𝘪𝘮𝘮𝘦𝘯𝘴𝘦, 𝘦𝘯𝘰𝘶𝘨𝘩 𝘵𝘰 𝘣𝘦𝘯𝘥 𝘳𝘢𝘥𝘪𝘢𝘵𝘪𝘰𝘯 𝘢𝘯𝘥 𝘴𝘪𝘨𝘯𝘪𝘧𝘪𝘤𝘢𝘯𝘵𝘭𝘺 𝘸𝘢𝘳𝘱 𝘴𝘱𝘢𝘤𝘦𝘵𝘪𝘮𝘦. 𝘍𝘶𝘳𝘵𝘩𝘦𝘳𝘮𝘰𝘳𝘦, 𝘵𝘩𝘦 𝘮𝘢𝘨𝘯𝘦𝘵𝘪𝘤 𝘧𝘪𝘦𝘭𝘥𝘴 𝘰𝘧 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘢𝘳𝘦 𝘶𝘯𝘱𝘢𝘳𝘢𝘭𝘭𝘦𝘭𝘦𝘥, 𝘰𝘧𝘵𝘦𝘯 𝘦𝘹𝘤𝘦𝘦𝘥𝘪𝘯𝘨 𝘢𝘯𝘺𝘵𝘩𝘪𝘯𝘨 𝘢𝘤𝘩𝘪𝘦𝘷𝘢𝘣𝘭𝘦 𝘰𝘯 𝘌𝘢𝘳𝘵𝘩 𝘣𝘺 𝘴𝘦𝘷𝘦𝘳𝘢𝘭 𝘰𝘳𝘥𝘦𝘳𝘴 𝘰𝘧 𝘮𝘢𝘨𝘯𝘪𝘵𝘶𝘥𝘦.

𝘛𝘩𝘦𝘴𝘦 𝘳𝘦𝘮𝘯𝘢𝘯𝘵𝘴 𝘢𝘳𝘦 𝘵𝘩𝘦 𝘥𝘦𝘯𝘴𝘦 𝘤𝘰𝘳𝘦𝘴 𝘭𝘦𝘧𝘵 𝘣𝘦𝘩𝘪𝘯𝘥 𝘢𝘧𝘵𝘦𝘳 𝘮𝘢𝘴𝘴𝘪𝘷𝘦 𝘴𝘵𝘢𝘳𝘴 𝘩𝘢𝘷𝘦 𝘦𝘹𝘩𝘢𝘶𝘴𝘵𝘦𝘥 𝘵𝘩𝘦𝘪𝘳 𝘯𝘶𝘤𝘭𝘦𝘢𝘳 𝘧𝘶𝘦𝘭 𝘢𝘯𝘥 𝘣𝘭𝘰𝘸𝘯 𝘵𝘩𝘦𝘪𝘳 𝘰𝘶𝘵𝘦𝘳 𝘭𝘢𝘺𝘦𝘳𝘴 𝘪𝘯𝘵𝘰 𝘴𝘱𝘢𝘤𝘦. 𝘛𝘩𝘦𝘺 𝘴𝘦𝘳𝘷𝘦 𝘢𝘴 𝘦𝘹𝘵𝘳𝘢𝘰𝘳𝘥𝘪𝘯𝘢𝘳𝘺 𝘯𝘢𝘵𝘶𝘳𝘢𝘭 𝘭𝘢𝘣𝘰𝘳𝘢𝘵𝘰𝘳𝘪𝘦𝘴, 𝘱𝘳𝘰𝘷𝘪𝘥𝘪𝘯𝘨 𝘢𝘴𝘵𝘳𝘰𝘱𝘩𝘺𝘴𝘪𝘤𝘪𝘴𝘵𝘴 𝘢𝘯𝘥 𝘱𝘩𝘺𝘴𝘪𝘤𝘪𝘴𝘵𝘴 𝘸𝘪𝘵𝘩 𝘵𝘩𝘦 𝘰𝘱𝘱𝘰𝘳𝘵𝘶𝘯𝘪𝘵𝘺 𝘵𝘰 𝘱𝘳𝘰𝘣𝘦 𝘵𝘩𝘦 𝘣𝘦𝘩𝘢𝘷𝘪𝘰𝘶𝘳 𝘰𝘧 𝘮𝘢𝘵𝘵𝘦𝘳 𝘶𝘯𝘥𝘦𝘳 𝘱𝘳𝘦𝘴𝘴𝘶𝘳𝘦𝘴 𝘢𝘯𝘥 𝘥𝘦𝘯𝘴𝘪𝘵𝘪𝘦𝘴 𝘵𝘩𝘢𝘵 𝘯𝘰 𝘦𝘢𝘳𝘵𝘩𝘭𝘺 𝘭𝘢𝘣𝘰𝘳𝘢𝘵𝘰𝘳𝘺 𝘤𝘰𝘶𝘭𝘥 𝘩𝘰𝘱𝘦 𝘵𝘰 𝘳𝘦𝘱𝘭𝘪𝘤𝘢𝘵𝘦. 𝘛𝘩𝘦 𝘮𝘢𝘵𝘵𝘦𝘳 𝘪𝘯𝘴𝘪𝘥𝘦 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘪𝘴 𝘴𝘰 𝘥𝘦𝘯𝘴𝘦 𝘵𝘩𝘢𝘵 𝘢𝘵𝘰𝘮𝘴 𝘢𝘳𝘦 𝘤𝘳𝘶𝘴𝘩𝘦𝘥, 𝘦𝘹𝘪𝘴𝘵𝘪𝘯𝘨 𝘪𝘯 𝘢 𝘴𝘵𝘢𝘵𝘦 𝘬𝘯𝘰𝘸𝘯 𝘢𝘴 𝘯𝘶𝘤𝘭𝘦𝘢𝘳 𝘱𝘭𝘢𝘴𝘮𝘢—𝘯𝘦𝘶𝘵𝘳𝘰𝘯𝘴 𝘢𝘯𝘥 𝘱𝘦𝘳𝘩𝘢𝘱𝘴 𝘦𝘷𝘦𝘯 𝘲𝘶𝘢𝘳𝘬 𝘮𝘢𝘵𝘵𝘦𝘳, 𝘴𝘵𝘪𝘭𝘭 𝘶𝘯𝘬𝘯𝘰𝘸𝘯 𝘵𝘰 𝘴𝘤𝘪𝘦𝘯𝘤𝘦.

𝘌𝘷𝘦𝘳𝘺 𝘵𝘪𝘮𝘦 𝘢𝘴𝘵𝘳𝘰𝘯𝘰𝘮𝘦𝘳𝘴 𝘱𝘦𝘦𝘳 𝘢𝘵 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘵𝘩𝘳𝘰𝘶𝘨𝘩 𝘵𝘦𝘭𝘦𝘴𝘤𝘰𝘱𝘦𝘴, 𝘸𝘩𝘦𝘵𝘩𝘦𝘳 𝘵𝘩𝘦𝘺'𝘳𝘦 𝘤𝘢𝘵𝘤𝘩𝘪𝘯𝘨 𝘵𝘩𝘦 𝘧𝘢𝘪𝘯𝘵𝘦𝘴𝘵 𝘰𝘧 𝘹-𝘳𝘢𝘺𝘴 𝘰𝘳 𝘧𝘰𝘭𝘭𝘰𝘸𝘪𝘯𝘨 𝘵𝘩𝘦 𝘳𝘦𝘨𝘶𝘭𝘢𝘳 𝘱𝘶𝘭𝘴𝘦 𝘰𝘧 𝘳𝘢𝘥𝘪𝘰 𝘸𝘢𝘷𝘦𝘴, 𝘸𝘦 𝘢𝘥𝘥 𝘢𝘯𝘰𝘵𝘩𝘦𝘳 𝘱𝘪𝘦𝘤𝘦 𝘵𝘰 𝘵𝘩𝘦 𝘱𝘶𝘻𝘻𝘭𝘦 𝘰𝘧 𝘩𝘰𝘸 𝘮𝘢𝘵𝘵𝘦𝘳 𝘣𝘦𝘩𝘢𝘷𝘦𝘴 𝘪𝘯 𝘴𝘶𝘤𝘩 𝘦𝘹𝘰𝘵𝘪𝘤 𝘤𝘰𝘯𝘥𝘪𝘵𝘪𝘰𝘯𝘴. 𝘛𝘩𝘦 𝘴𝘵𝘶𝘥𝘺 𝘰𝘧 𝘯𝘦𝘶𝘵𝘳𝘰𝘯 𝘴𝘵𝘢𝘳𝘴 𝘤𝘩𝘢𝘭𝘭𝘦𝘯𝘨𝘦𝘴 𝘰𝘶𝘳 𝘵𝘩𝘦𝘰𝘳𝘪𝘦𝘴 𝘰𝘧 𝘱𝘩𝘺𝘴𝘪𝘤𝘴, 𝘱𝘶𝘴𝘩𝘪𝘯𝘨 𝘵𝘩𝘦 𝘣𝘰𝘶𝘯𝘥𝘢𝘳𝘪𝘦𝘴 𝘰𝘧 𝘸𝘩𝘢𝘵 𝘸𝘦 𝘬𝘯𝘰𝘸 𝘢𝘣𝘰𝘶𝘵 𝘵𝘩𝘦 𝘧𝘶𝘯𝘥𝘢𝘮𝘦𝘯𝘵𝘢𝘭 𝘧𝘰𝘳𝘤𝘦𝘴 𝘢𝘯𝘥 𝘱𝘢𝘳𝘵𝘪𝘤𝘭𝘦𝘴 𝘵𝘩𝘢𝘵 𝘨𝘰𝘷𝘦𝘳𝘯 𝘵𝘩𝘦 𝘶𝘯𝘪𝘷𝘦𝘳𝘴𝘦.

𝐁𝐄𝐒𝐓 𝐖𝐈𝐒𝐇𝐄𝐒
Sondre Åkerøy Sundrønning 
𝐏𝐇𝐘𝐒𝐈𝐂𝐈𝐒𝐓

FB_IMG_1709583549034.jpgFB_IMG_1709583553411.jpg

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...